Articles

N-Arylpiperazinyl-*N*-propylamino Derivatives of Heteroaryl Amides as Functional Uroselective α_1 -Adrenoceptor Antagonists

Todd R. Elworthy,^{*,†} Anthony P. D. W. Ford,[‡] Gary W. Bantle,[†] David J. Morgans, Jr.,[†] Rachel S. Ozer,[†] Wylie S. Palmer,[†] David B. Repke,[†] Magarita Romero,[†] Leticia Sandoval,[†] Eric B. Sjogren,[†] Francisco X. Talamás,[†] Alfredo Vazquez,[†] Helen Wu,[†] Nicolas F. Arredondo,[‡] David R. Blue, Jr.,[‡] Andrea DeSousa,[‡] Lisa M. Gross,[‡] M. Shannon Kava,[‡] John D. Lesnick,[‡] Rachel L. Vimont,[‡] Timothy J. Williams,[‡] Quan-Ming Zhu,[‡] Jürg R. Pfister,[†] and David E. Clarke^{‡,§}

Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California 94304-1397

Received March 12, 1997[®]

Novel arylpiperazines were identified as α_1 -adrenoceptor (AR) subtype-selective antagonists by functional *in vitro* screening. 3-[4-(*ortho*-Substituted phenyl)piperazin-1-yl]propylamines were derivatized with *N*,*N*-dimethyl anthranilamides, nicotinamides, as well as carboxamides of quinoline, 1,8-naphthyridine, pyrazolo[3,4-*b*]pyridine, isoxazolo[3,4-*b*]pyridine, imidazo[4,5*b*]pyridine, and pyrazolo[1,5-*a*]pyrimidines. Strips of rabbit bladder neck were employed as a predictive assay for antagonism in the human lower tract. Rings of rat aorta were used as a "negative screen" for the test antagonists. Binding to α_1 -ARs was relatively sensitive to size and electronic features of the arylpiperazine portion of the antagonists and permissive to these features on the heteroaryl carboxamide side. These structure–affinity findings were exploited to produce nicotinamides (*e.g.* **13ii** and **25x**) and pyrazolo[3,4-*b*]pyridines (*e.g.* **37f** and **37y**) ligands with nanomolar affinity at the α_1 -AR subtype prevalent in the human lower urinary tract (p A_2 values: 8.8, 10.7, 9.3, and 9.9, respectively) and displaying 2–3 orders of magnitude selectivity over the α_{1D} -AR.

Introduction and Pharmacology

Benign prostatic hyperplasia (BPH) is present in nearly one in seven men aged 40-49 years, and the occurrence rises to four in nine men aged 60-69. The condition contributes to urethra obstruction and the development of lower urinary tract symptoms (e.g. frequency, hesitancy, reduced urine flow rates, large residual volumes).1 Caine and co-workers reported in 1976 that the administration of the mixed α_1/α_2 -adrenoceptor (AR) antagonist phentolamine (1, Chart 1) alleviated these symptoms.² The clinical study of the selective α_1 -AR (over α_2 -ARs) antagonist prazosin (2) supported the relevance of the blockade of α_1 -ARs.³ Despite evidence for the clinical efficacy of 2 and related agents such as terazosin (3)⁴ and doxazosin (4),⁵ as well as tamsulosin (5),⁶ these drugs antagonize the vascular, CNS, as well as prostatic α_1 -ARs. Accordingly, side effects related to depressor and CNS activities have hindered truly efficacious dosing schedules and have underscored the necessity for achieving selective blockade of lower urinary tract α_1 -ARs. α_1 -AR heterogeneity has been well demonstrated,⁷ with three distinct α_1 -ARs cloned to date. The subtypes are now pharmacologically classified^{7e} as α_{1A} , α_{1B} , and α_{1D} .^{7f} Their distribution within the body and which subtype was most relevant to the disease state was not well understood at the outset of this program. Thus we sought a subtype Chart 1

selective antagonist that would effectively relax outlet tissues while sparing subtypes involved principally in cardiovascular and CNS control. A report⁸ has recently corroborated our findings that the α_{1a} -AR is significantly expressed in diseased prostatic tissue.

Our initial effort in this area produced potent antagonists (*e.g.* RS-17053, **6**) in a classical α_{1A} -AR preparation, the isolated perfused rat kidney.^{7e} These compounds warranted further study in human lower urinary tract tissues. However, a surprisingly low affinity estimated for **6** in the target tissue shifted our attention away from this hybrid class of indoramin and **5** ana-

^{*} Inquiries should be directed to this author.

[†] Department of Medicinal Chemistry.

[‡] Center for Biological Research.

[§] Present address: 8 Palace Gardens, Royston, Herts, U.K. SG8 5AD.

[®] Abstract published in *Advance ACS Abstracts,* August 1, 1997.

Table 1. Validation of *in Vitro* Screen for Uroactive α_1 -AR Subtype Antagonists

•• •			
compound	bovine $\alpha_{1a}{}^a$	human prostate ^b	rabbit bladder neck ^c
phentolamine, 1 prazosin, 2 (±)-terazosin, 3 (-)-tamsulosin, 5	$\begin{array}{c} 9.1 \pm 0.09 \\ 9.9 \pm 0.02 \\ 8.6 \pm 0.03 \\ 9.9^e \end{array}$	$egin{array}{c} { m NT}^d \ 8.7 \pm 0.1 \ 7.6 \pm 0.1 \ 10.4 \pm 0.1 \end{array}$	$\begin{array}{c} 8.2 \pm 0.02 \\ 8.3 \pm 0.1 \\ 7.7 \pm 0.1 \\ 9.8 \pm 0.1 \end{array}$
RS-17053, 6 5-MeUrapidil, 7 9	$\begin{array}{c} 9.1 \pm 0.32 \\ 9.3 \pm 0.06 \\ 8.8 \pm 0.23 \end{array}$	$\begin{array}{c} 7.3 \pm 0.1 \\ 8.2 \pm 0.1 \\ 8.7 \pm 0.3 \end{array}$	$\begin{array}{c} 7.3 \pm 0.1 \\ 8.4 \pm 0.1 \\ 8.9 \pm 0.1 \end{array}$

^{*a*} pK_i estimate with [³H]prazosin displacement: Schwinn, D. A.; *et al. J. Biol. Chem.* **1990**, *256*, 8183–8189. ^{*b*} pA_2 value *vs* NE according to ref 9. ^{*c*} pA_2 value *vs* PE according to ref 9. ^{*d*} NT = not tested. ^{*e*} pK_i value reported by Foglar, R.; *et al. Eur. J. Pharmacol.* **1995**, *288*, 201–207.

logues.⁹ Lower affinity estimates were also obtained in human prostatic tissues for (+)-niguldipine (p A_2 7.5 \pm 0.5) than what may be expected for its affinity judged by displacement of [³H]prazosin from the cloned bovine α_{1a} -AR (p K_i 9.2 \pm 0.1). Therefore our attention was shifted to N-phenylpiperazinyl-containing α_1 -AR ligands such as 7¹⁰ and 8.¹¹ This feature will be borne in most of the antagonists described in this report despite their potential interaction with other seven-transmembrane receptors.¹²

The next requirement was to establish a predictive assay for the α_1 -AR subtype(s) of the lower urinary tract smooth muscles from man. In this regard, isolated strips of rabbit bladder neck (RBN)¹³ fulfilled the requisite pharmacological profile consistent with the $\alpha_{1A/1L}$ -subtype (Table 1). Rat thoracic aortic rings were used as the primary functional screen for the "negative target", with a pharmacological profile reflecting the characteristics of an α_{1D} -AR assay.¹⁴ All compounds described in subsequent tables displayed properties consistent with competitive antagonism, and affinity estimates are reported as p A_2 values.

Chemistry

The initial aryl amides of interest were produced from 2-aminonicotinonitrile 10 by either a Ritter (9) or controlled hydrolysis (primary carboxamide, 11) reactions. As outlined in Scheme 1, 1-(o-methoxyphenyl)piperazine (o-MOPP-H) was alkylated with (3-bromopropyl)phthalimide and subjected to hydrazinolysis to give **12**. The primary amine of **12** reacted at the 2-position of 14i-vii to furnish (refluxing xylenes) the nicotinamide family 13. 2-Chloronicotinoyl chloride was derivatized to the amides 14i-iii in a routine manner, and it also afforded ketones 14iv,v via Gilman type reagents.¹⁵ In order to prepare 5-substituted nicotinamides, 2-hydroxynicotinic acid was reacted with NIS to give the 5-iodo intermediate 15, and palladium(0)catalyzed cyanation¹⁶ selectively gave **14vi**. Aryl iodide 15 was also treated with *t*-BuLi and immediately with oxaziridine 16¹⁷ to afford 14vii after phenolic protection. Antagonists 17, 18, 19, 20, and 21 were prepared by analogous chemistry from 2-chloro-4,6-dimethylnicotinamide,¹⁸ 4-chloronicotinic acid,¹⁹ nicotinic acid,²⁰ 6-chloronicotinic acid,²¹ and ethyl 4-chloropyrimidine-5carboxylate,²² respectively.

The anthranilamides **22** studied in this program were prepared according to Scheme 2. Substituted 2-nitrobenzoic acids produced anthranilamides **23i**–**iii**, acetylsalicyloyl chloride gave **23iv**, and 2,2'-dithiosali-

Scheme 1. Preparation of Nicotinamides

cylic acid gave **23v**. These nucleophiles (**23** or "ArX⁻") all displaced the mesylate of (3-(mesyloxy)propyl)-o-MOPP with K₂CO₃ present. 2-Aminobenzophenone also reacted with the electrophile to give **22vi**. Acylation of **23i** with acryloyl chloride and a subsequent Michael reaction with *o*-MOPP-H furnished **22vii**.

Several compounds with a modified arylpiperazine moiety were prepared. Most *N*-phenylpiperazines were obtained by a Prelog procedure²³ (Scheme 3). We employed the method of Poindexter²⁴ in the case of a substrate with an acid stable substituent to prepare **24q**, so as to avoid the use of bis(2-chloroethyl)amine. Aromatic displacement of halogens accomplished the efficient incorporation of the piperazine ring. *N*-Lithiopiperazine afforded **24j**,**y** by direct *ortho* substitution as modified from the work of Meyers²⁵ and elaborated by ten Hoeve.²⁶ *N*-Formylpiperazine displaced chloride from the appropriate aromatics to prepare **241**,**x**.

The preparation of (aryloxy)ethylamines is outlined in Scheme 4. Ethylene carbonate was pyrolyzed in the presence of catechol, and the resulting phenol was alkylated with 2,2,2-trifluoroethyl tosylate in the presence of K_2CO_3 to produce **27a**. 2-Iodophenol was alkylated, and the pendent ester was hydrolyzed. The homologated aryl iodide was transformed to a presumed boronic ester (NaH, followed by *t*-BuLi, and sequential quench with (MeO)₃B and HOAc), which participated in a Suzuki reaction²⁷ to give **27b**. By sequential

treatment of these alcohols with MsCl, and then 4-amino-1-benzylpiperidine and hydrogenolysis, N,N-dimethylnicotinamide could be appended to furnish compounds **28a**-**c**.

We also designed and prepared some fused heterocyclic *N*,*N*-dimethylamides. Scheme 5 illustrates the annulation chemistry and significant transformations obtained with a variety of heterocycles. *Ortho*-substituted anilines yielded 8-substituted-4-chloroquinoline ethyl carboxylates **30**, **31**, and **32** upon exposure to diethyl ethoxymethylenemalonate and then refluxing phosphoryl chloride. The ester of **31** and **32** was converted to the *N*,*N*-dimethyl carboxamide of **33** and **34** by first careful hydrolysis. 4-Chloro-8-cyanoquinoline **35** was produced from **34** and LiCN in the presence of catalytic amounts of 12-crown-4 and Pd(0).¹⁶ Analogous treatments led to chloroheterocyclic carboxamides **36** through **42**.

The assembly of the target antagonists is shown in Scheme 6, and we employed two strategies. A route that was unsuccessful for the preparation of 2-aminonicotinamides (*i.e.* Scheme 1) was efficient in these cases. Quinoline **30** was reacted with 3-amino-1-propanol, and the pendant primary hydroxyl was activated with MsCl. Arylpiperazine **24f** was then alkylated in the presence of NaI. The antangonist **30f** was produced following ester-amide conversion and **30f**' upon treatment with 1 atm of H₂ and 10% Pd/C. An alternative route was routinely used and is identical to that described in

Scheme 3. Preparation of *N*-Arylpiperazines

Scheme 4. Preparation of (Aryloxy)ethylamines

Scheme 1. Arylpiperazines **24f**, **24t**, and **24y** were homologated to 3-propylamines **43f**, **43t**, and **43y**, respectively. Amine **43f** was subjected to substitution conditions with **36** and **37** (as described for Scheme 1) to produce antagonists **36f** and **37f**. The quinolines **33**

Scheme 5. Preparation of Quinoline-, 1,8-Naphthyridine-, Pyrazolo[3,4-*b*]pyridine-, Isoxazolo[4,5-*b*]pyridine-, Imidazo[4,5-*b*]pyridine-, and Pyrazolo[1,5-*a*]pyrimidinecarboxamides

and **35** were smoothly converted to antagonists **33t** and **35t**. 8-Carboxamide **35t'** was obtained by hydrolysis of **35t**. Additional targets prepared by the later approach were **37t** and **37y** that were prepared from piperazines **24t** and **24y**, respectively. Chlorohetereocycles **38**, **39**, **40**,²⁹ **41**,³⁰ and **42** produced antagonists **38f**, **39f**, **40t**, **41t**, and **42t** respectively. Antagonist **41t** was chlorinated at the 3-position of the pyrazolo[1,5-*a*]pyrimidine³⁰ to produce **41t'**.

Results and Discussion

The primary screens employed in this program were functional assays: RBN and rat aorta for affinity estimates representative of the $\alpha_{1A/1L}$ - and α_{1D} -ARs, respectively. These numbers were usually corroborated by displacement of [³H]prazosin by test antagonists at all three cloned subtypes. However, the functional data derived from the RBN were of greater predictive value for the human target tissue compared with homogenate binding at the recombinant α_{1a} -AR (*vide supra*, Table 1). The next criteria were to identify novel and selective ligands. To the former, patents by Byk-Gulden³¹ and Synthelabo,¹¹ had described primary carboxamides of pyridine and pyrimidine (*e.g.* 8). The data summarized in Table 2 suggested that dialkylamides gave subtype selectivity. *N*-Monomethylnicotinamide **13i** and *N*,*N*- **Scheme 6.** Preparation of Bicyclic Carboxamide Antagonists

dimethylnicotinamide **13ii** possessed roughly the same affinity in the RBN assay. But, **13ii** displayed lower affinity in the rat aorta assay, and hence selective. No significant improvement was realized with pyrrolidinoamide **13iii**, nor ketones **13iv**, v. 4-Aminonicotinamide **18**, attachment isomer of **13ii**, and phenol **13vii** demonstrated the same decreased selectivity. Isomer **20** (of **13ii**) showed *no* subtype selectivity thus defining an optimal *ortho* relationship of amino attachment and the carboxamide. The more potent antagonist is aminolinked. The nitrogen analog **22i** is 2–3-fold more selective than its oxygen (**22iv**) and sulfur (**22v**) counterparts. Bis-amide **22vii** shows a 4-fold loss of affinity relative to **22i**, indicating a significance of electron donation.

Diminished affinity at the α_{1D} -AR was revealed by the out-of-plane substituents (with respect to the π -carbo-nyl-aromatic overlap) of the carbonyls of **13i** (pA₂ value: 8.5, methylamide), **9** (8.0, *tert*-butylamide), **13ii** (7.7, dimethylamide), **13iv** (8.7, cyclopropyl ketone), and **13v** (8.2, *tert*-butyl ketone). The effect is substantiated in comparing **22i** (7.8) and benzophenone **22vi** (8.0) and may be explained by the likely capacity of **13i** and **22vi** to form an *intra*molecular H-bond. To resolve whether this intolerance of the α_{1D} -AR is due to an unfavorable H-bond acceptor presented by the carbonyl oxygen *or*

Table 2.	Structure-	-Selectivit	y Relations	hips of	f Ketones	and A	Amides	of 1	Benzene,	Pyridin	e, and F	yrimidine
----------	------------	-------------	-------------	---------	-----------	-------	--------	------	----------	---------	----------	-----------

compound	scheme	RBN, $pA_2 (\alpha_{1a})^a$	rat aorta, p A_2
9	1	$8.9 \pm 0.1~(8.8 \pm 0.2)$	8.0 ± 0.2
11	1	NT^b (9.9 \pm 0.3)	8.0 ± 0.2
13i	1	9.0 ± 0.05	8.5 ± 0.1
13ii	1	$8.8 \pm 0.1 \; (9.1 \pm 0.2)$	7.7 ± 0.01
13iii	1	NT (9.1 ± 0.1)	7.7 ± 0.3
13iv	1	9.3 ± 0.03	8.7 ± 0.1
13v	1	NT (9.4 \pm 0.3)	8.2 ± 0.2
13vi	1	9.1 ± 0.2	7.7 ± 0.1
13vii	1	8.7 ± 0.1	8.0 ± 0.1
o-MOPP(CH ₂) ₃ NH-2-(4,6-dimethylnicotinamide), 17	1	$8.0 \pm 0.1~(8.8 \pm 0.2)$	7.4 ± 0.03
o-MOPP(CH ₂) ₃ NH-4-(<i>N</i> , <i>N</i> -dimethylnicotinamide), 18	1	$7.9 \pm 0.1 \; (9.1 \pm 0.2)$	7.3 ± 0.2
o-MOPP(CH ₂) ₃ NH-4-(<i>N</i> , <i>N</i> -diisopropylnicotinamide), 19	1	NT (8.8 ± 0.2)	6.6 ± 0.2
o-MOPP(CH ₂) ₃ NH-6-(<i>N</i> , <i>N</i> -dimethylnicotinamide), 20	1	7.6 ± 0.1	7.5 ± 0.1
o-MOPP(CH ₂) ₃ NH-4-(5-pyrimidine-N,N-dimethylcarboxamide), 21	1	8.4 ± 0.1	7.3 ± 0.1
22i	2	$9.0 \pm 0.1~(9.4 \pm 0.2)$	7.8 ± 0.1
22ii	2	9.3 ± 0.1	7.7 ± 0.2
22iii	2	8.5 ± 0.1	7.2 ± 0.3
22iv	2	8.4 ± 0.1	7.5 ± 0.1
22v	2	8.7 ± 0.1	7.9 ± 0.1
22vi	2	7.5 ± 0.04	8.0 ± 0.2
22vii	2	NT (8.8 \pm 0.04)	7.2 ± 0.1

^{*a*} See ref *a* of Table 1. ^{*b*} NT = not tested.

Table 3. Selectivity Effects of Arylpiperazine Substitution on α_1 -AR Subtype Antagonists

compound	Z	\mathbb{R}^2	van der Waals radii (Å) ^a	\mathbb{R}^6	scheme	RBN, $pA_2 (\alpha_{1a})^b$	rat aorta, p A_2
25a	СН	Н	1.2	Н	1	$8.2 \pm 0.1~(8.7 \pm 0.2)$	7.8 ± 0.2
25b	CH	CN	1.51	Н	1	8.7 ± 0.05	8.0 ± 0.1
25c	СН	OH	1.53	Н	1 ^c	8.3 ± 0.1	7.2 ± 0.02
13ii	CH	OMe	1.52	Н	1	$8.8 \pm 0.1 \; (9.1 \pm 0.2)$	7.7 ± 0.01
25d	CH	OEt	1.52 +	Н	1	9.3 ± 0.2	8.1 ± 0.04
25e	CH	OCF ₃		Н	1 (<i>via</i> 24e)	8.5 ± 0.3	7.0 ± 0.1
25f	CH	OCH ₂ CF ₃		Н	1 (<i>via</i> 24f)	10.0 ± 0.2	7.8 ± 0.2
25g	CH	OCH ₂ c-Pr	1.52 +	Н	1^d	$9.8 \pm 0.2 \; (10.1 \pm 0.3)$	8.0 ± 0.3
25ĥ	CH	OCH ₂ t-Bu	1.52 +	Н	1 (<i>via</i> 24h)	$\mathrm{NT}^{e}\left(9.1\pm0.2 ight)$	7.3 ± 0.03
25i	CH	Ph	1.62	Н	1 (<i>via</i> 24i)	8.9 ± 0.2	7.2 ± 0.02
25j	CH	2-oxazolo		Н	1 (<i>via</i> 24j)	9.5 ± 0.1	7.6 ± 0.1
25k	CH	Me	1.80	Н	1	$8.7 \pm 0.04~(9.1 \pm 0.04)$	8.0 ± 0.1
251	N	Me	1.80	Н	1 (<i>via</i> 241)	6.7 ± 0.2	NT
25m	CH	SMe	1.82	Н	1	9.2 ± 0.03	7.5 ± 0.2
25n	CH	<i>n</i> -Pr	1.80 +	Н	1 (<i>via</i> 24n)	9.7 ± 0.1	7.5 ± 0.04
250	CH	Bn	1.80+	Н	1 (<i>via</i> 24o)	8.2 ± 0.1	7.1 ± 0.3
25p	CH	c-Pr	1.80+	Н	1 (<i>via</i> 24p)	9.2 ± 0.2	7.2 ± 0.1
25q	CH	<i>i</i> -Pr	2.2	Н	1 (<i>via</i> 24q)	9.4 ± 0.3	7.2 ± 0.2
25r	CH	CF_3	2.2	Н	1 (<i>via</i> 24r)	7.9 ± 0.1	6.5 ± 0.1
25s	СН	Me	1.80++	Me	1	NT (8.1 ± 0.1)	NT
25t	CF	OMe	1.52	Н	1 (<i>via</i> 24t)	8.8 ± 0.03	7.2 ± 0.1
25u	СОН	OMe	1.52	Н	1 ^f	7.9 ± 0.05	7.1 ± 0.1
25v	COMe	OMe	1.52	Н	1	7.5 ± 0.02	6.0 ± 0.2
25w	CMe	OMe	1.52	Н	1 (<i>via</i> 24w)	9.1 ± 0.1	7.4 ± 0.1
25x	CMe	1-pyrrolo		Н	1 (<i>via</i> 24x)	10.7 ± 0.3	7.9 ± 0.2

^{*a*} See ref 32 of text. ^{*b*} See ref *a* of Table 1. ^{*c*} Prepared from the free base of **13ii** by the action of NaCN in boiling DMSO. ^{*d*} Prepared from **25c** with (bromomethyl)cyclopropane and cesium carbonate. ^{*e*} NT = not tested. ^{*f*} See Experimental Section.

an interaction of the substituent born on the carbonyl carbon, ligands **19** (7.3, dimethylamide) and **20** (6.6, diisopropylamide) appear to support the latter. 5-Methylanthranilamide **22ii** displayed higher affinity at the target tissue over its unsubstituted parent **22i** and its 6-methyl isomer **22iii**. The trend of affinity increase, in both assays, tracks with decreasing polarity of the aryl amide: Benzamide **22i** (pA_2 in the RBN, 9.0) > pyridinamide **13ii** (8.8) > pyrimidinamide **21** (8.4). Lower affinity was also observed with more polar amides such as pyridol **13vii** and nicotinamide **19**.

These suggestions of a hydrophobic pocket were explored with the study of bicyclic compounds summarized in Table 4.

The α_1 -ARs topologies were next examined by retaining the *N*,*N*-dimethyl-2-(*n*-propylamino)nicotinamide subunit and studying the substitution of the arylpiperazine. The data summarized in Table 3 suggests an additional selectivity feature(s) of the antagonists. The greater the size³² of a *single ortho* moiety the greater the affinity **and** selectivity of the antagonist. The 2-methyl-substituted **25k** has 3-fold higher affinity than the unsubstituted parent **25a** and 10-fold greater than

Table 4. Uroselective Bicyclic Amide Antagonists

compound	scheme	RBN, $pA_2 (\alpha_{1a})^a$	rat aorta, p A_2
28a	4	$8.8 \pm 0.1~(8.8 \pm 0.2)$	7.2 ± 0.2
28b	4	7.7 ± 0.1	5.6 ± 0.2
28 c	4	NT^b (8.5 \pm 0.05)	7.8 ± 0.01
30f	6	9.1 ± 0.2	6.9 ± 0.1
30f'	6	8.4 ± 0.2	7.0 ± 0.1
33t	6	8.1 ± 0.3	6.5 ± 0.1
35t	6	8.9 ± 0.03	6.4 ± 0.1
35ť	6	9.3 ± 0.1	6.8 ± 0.2
36f	6	10.0 ± 0.1	8.4 ± 0.1
37f	6	9.3 ± 0.2	6.9 ± 0.2
37t	6	8.9 ± 0.1	6.5 ± 0.1
37y	6	9.9 ± 0.1	6.7 ± 0.02
38f	6	8.6 ± 0.4	7.2 ± 0.1
39f	6	8.8 ± 0.1	7.1 ± 0.1
40 t	6	9.2 ± 0.1	7.1 ± 0.1
41t	6	9.2 ± 0.1	7.0 ± 0.05
41ť	6	9.1 ± 0.02	6.8 ± 0.2
42t	6	8.9 ± 0.1	6.2 ± 0.1

^{*a*} See Table 1, ref *a*. ^{*b*} NT = not tested.

the 2,6-dimethyl 25s. However, the optimum substitutents are small alkyl, alkyloxy, or heterocyclic. The following antagonists **25d** ($\mathbb{R}^2 = OEt$), **25q** ($\mathbb{R}^2 = i$ -Pr), **25g** ($R^2 = OCH_2c$ -Pr), and **25f** ($R^2 = OCH_2CF_3$) displayed increasing affinity and selectivity. This trend is echoed by the small *o*-aryl-bearing targets **25i** ($\mathbb{R}^2 =$ Ph), **25j** ($R^2 = 2$ -oxazolo), **25x** ($R^2 = 1$ -pyrrolo). The following antagonists suggest a size restriction as what the $\alpha_{1A/1L}$ -AR may tolerate. The neopentyloxy-substituted ligand 25h displayed significantly lower affinity than (cyclopropylmethyl)oxy 25g and benzyl 25o was less affine than phenyl 25i. The size sensitivity is also realized at a receptor contact area from the para position (relative to piperazine attachment). Antagonists 25t (Z = CF) and 25w (Z = CMe) share indistinguishable pharmacological properties and have higher affinity than phenol 25u (Z = COH) which is a tighter binder than its methyl ether 25v (Z = COMe). An additional feature was identified. The presence of electron-withdrawing substituents, regardless of size, led to loss of affinity: $25f(R^2 = OCH_2CF_3) > 25e(R^2 =$ OCF_3 > **25r** ($R^2 = CF_3$) with the exception of **25b**. The electron poor 4-pyridylpiperazine 251 possessed almost micromolar affinity, a dramatic loss of activity to its carbacyclic comparator 25k.

(Aryloxy)ethylamines are a known class of α-AR antagonists,³³ and we prepared some related nicotinamides for evaluation of α_1 -AR subtype selectivity. The three (aryloxy)ethylamine ligands 28a-c displayed lower affinity than their arylpiperazine counterparts but reveal some noteworthy points (Table 4). These ligands are incapable of intramolecular H-bonding, and subtype selectivity is retained with the N,N-dimethyl-2-(4-aminopiperidinyl)nicotinamide component, thus lending further support to the notion of out-of-plane carbonyl requirement of the ligand to interact with the $\alpha_{1A/1L}$ -AR and reduce interaction with the α_{1D} -AR. Ortho substitution of the (aryloxy)ethylamine led to desired antagonist properties (i.e. 28a is 8-fold more selective than **28c**) as also realized in the arylpiperazine series. The π -poor *ortho* substituent of **28b** provided a relatively low affinity ligand but is still subtype selective by 2orders of magnitude. Further outlined in Table 4, the first quinoline-3-carboxamides 30f and 30f' were derived from [o-(trifluoroethoxy)phenyl]piperazine **24f** and displayed significant subtype selectivity if the 8-position is substituted. The compounds in Scheme 6 were

Table 5. Binding Affinities of Selected Antagonists^a

compound	$\alpha_{2B}{}^{b}$	$\mathbf{D}_2{}^c$	5 -HT _{1A} d	human prostate ^e
13ii	ND^{f}	7.4 ± 0.1	7.6 ± 0.1	8.5 ± 0.1
22ii	6.5 ± 0.1	7.3 ± 0.05	$\textbf{8.0} \pm \textbf{0.04}$	$\textbf{9.0} \pm \textbf{0.1}$
25t	6.5 ± 0.2	6.7 ± 0.3	$6.7 \pm 0.1 \; (1.5)$	8.5 ± 0.1
25i	7.1 ± 0.2	6.9 ± 0.2 (ND)	ND	ND
37f <i>g</i>	$8.6 \pm 0.2 \; (0.6)$	8.1 ± 0.1	$7.5 \pm 0.2 \; (1.3)$	$\textbf{9.0} \pm \textbf{0.1}$
37t	ND	6.4 ± 0.3 (0.6)	$\textbf{6.5} \pm \textbf{0.1}$	9.3 ± 0.1

^{*a*} Mean p*K*_i values with a minimum of three determinations and mean Hill coefficients ranging from 0.8 to 1.1 except where noted in parentheses. ^{*b*} [³H]Rauwolscine (New England Nuclear) displacement from rat kidney homogenate in the presence of 10 μ M phentolamine. ^{*c*} p*K*_i estimate: Theodorou, A. E.; *et al. J. Pharm. Pharmacol.* **1980**, *32*, 441. ^{*d*} Michel, A. D.; Whiting, R. L. *Br. J. Pharmacol.* **1984**, *83*, 460p. ^{*e*} See ref 9 and Experimental Section for p*A*₂ determinations. ^{*f*} ND = not determined. ^{*g*} p*K*_i value <5 in GABA_A-benzodiazepine (rat brain) binding.

prepared to probe the tolerance of the ARs to peri and distal substitution as well as polarity of antagonists. Ligands 36f (methylamide) and 37f (dimethylamide) conferred increased affinities, with 40- and 250-fold subtype selectivity, respectively, and thus all successors would bear dimethylamide. Quinolines 33t, 35t, and 35t' displayed remarkably similar properties, despite the changes from $R^8 = Me$, CN, to C(O)NH₂, respectively. Oxazole-bearing 37y gave greater than 1000fold subtype selectivity, furnishing additive selectivity elements in both arylpiperazine and heteroarylamide moieties. 3-tert-Butylpyrazolopyridine 38f revealed lower affinity and selectivity compared to 3-methyl **37f**, thus demonstrating that a bulky peri substituent unfavorably restrains the aminopropane linker over the carboxamide. The best comparators for removal of this feature are quinoline 33t and imidazopyridine 40t. Antagonist 40t, which bears no peri substituent, displays subnanomolar affinity at the target receptor and 100-fold selective while 33t bears a peri-H and has 10-fold lower affinity. The selective pharmacological properties of 40t are present even with increased polarity of the ligand. The latter was noted earlier (i.e. compare affinities of 22i, 13ii, and 21) as a feature leading to diminished affinity. Removal of the distal substituent of 37f provides 39f, which is less potent and less selective. This effect mirrors that observed with quinolines 30f and **30f**', but is less pronounced in the more polar ligands pyrazolopyrimidines **41t** ($\mathbb{R}^3 = \mathbb{H}$) and **41t**' ($\mathbb{R}^3 = \mathbb{C}$).

Conclusions

Table 5 summarizes select data of novel α_1 -AR subtype selective antagonists at other 7-TM receptors, as well as their affinities at the target tissue. Nicotinamides **25t** and **25i** as well anthranilamide **22ii** show low (micromolar) affinities at the α_{2B} -AR. Furthermore, the possibility of depressor action *via* CNS 5-HT receptor activation¹⁰ would appear, as well as metabolic considerations that will be presented in subsequent reports, to have excluded **22ii** from further evaluation. Pyrazolopyridines **37f** and **37t**, having displayed selective lower urinary tract blockade *in vivo*,³⁴ were evaluated in the dog for pharmacokinetics and **37f** produced emesis. This latter effect could be suppressed by coadminitration with the D₂-antagonist domperidone; therefore **37f** was removed from clinical consideration.

The data produced from studying isolated prostatic (human) tissue suggested that data gathered from the displacement of [³H]prazosin (bovine-cloned α_{1a}) over-

estimated affinity values of test antagonists. Affinity estimates obtained from strips of rabbit bladder neck served predictive as a primary screen for the progression of drug discovery for the treatment of BPH. The predominantly expressed adrenoceptor in the human lower tract is the α_{1a} . However, it bears functional pharmacological distinction and hence was termed $\alpha_{1A/1L}$. The novel heteroarylamide antagonists described in this article point to a common mode of interaction at the $\alpha_{1A/1L}$ and α_{1D} -ARs despite the differences in size or conformational restriction. Antagonist 13ii (RS-97078) has been studied in healthy volunteer men (ages 18-70 years) following oral administration of single doses ranging from 2.5 to 30 mg. A clinically efficacious dose is expected to be in the range of 5-15 mg/80 kgman for an agent of this affinity. These findings may be reported by the clinical investigators in due course.

Experimental Section

Pharmacology. Estimates of affinity for antagonists were obtained as described elsewhere.⁹ In the case of rabbit bladder neck (RBN), strips of smooth muscle tissue approximately 8-10 mm long and 2-3 mm wide were taken in a longitudinal manner from the area of urothelium denuded bladder between trigone and the first 3-4 mm of proximal urethra. RBN tissues were then used as described elsewhere for human lower urinary tract tissues. All assays employed cumulative concentration-effect curves using norepinephrine (NE; rat aorta and human LUT) or phenylephrine (PE; RBN). Affinity determinations for several antagonists were calculated by full Schild regression analysis. For many novel compounds, affinity estimates were calculated from data with two antagonist concentrations by assuming a competitive, reversible interaction at a singular subtype according to the following equation: apparent $pA_2 = -\log[B] + \log(r - 1)$, where [B] is concentration of test compound and r is the ratio of concentrations of agonist required to generate 50% maximal response in presence and absence of test compound. Mean pA_2 values are reported for a minimum of three determinations on tissues obtained from at the least two animals where in all cases standard errors of the mean were less than 0.3.

Chemistry. General: ¹H (300 MHz) and ¹³C NMR spectra are reported in ppm (δ) with tetramethylsilane at 0.0 ppm using $CDCl_3$ for free bases and $DMSO-d_6$ for salts. The following abbreviations are used: CDI = 1,1'-carbonyldiimdazole, DMF = dimethylformamide, THF = tetrahydrofuran(distilled from sodium benzophenone ketyl), NIS = *N*-iodosuccinimide, NMP = 1-methyl-2-pyrrolidinone, DCE = 1,2-dichloroethane, SGC = silica gel chromatography, TFA = trifluoroacetic acid, rt = room or ambient temperature, and brine refers to an aqueous saturated solution of NaCl. The following piperazines were purchased (registry numbers supplied by author): 1-phenyl- [Reg. No. 92-54-6], (2-cyano)phenyl- [Reg. No. 111373-03-6], (2-methoxy)phenyl- (o-MOPP-H) [Reg. No. 5464-78-8], (2-ethoxy)phenyl- [Reg. No. 83081-75-8], (2-mercaptomethyl)phenyl- [Reg. No. 1013-24-7], (2-methyl)phenyl-[Reg. No. 39512-51-1], (2,6-dimethyl)phenyl- [Reg. No. 1012-91-5], and (2,4-dimethoxy)phenyl- [Reg. No. 16015-75-1].

Compounds Described in Scheme 1. *N*,*N*-**Dimethyl 2-Chloronicotinamide (14ii).** 2-Chloronicotinic acid (19.55 g, 124 mmol) was suspended in CH_2Cl_2 (200 mL) and cooled to 0 °C, and $(COCl)_2$ (16 mL, 186 mmol) was added slowly. A few drops of DMF were added, and the mixture was heated to reflux for 4 h. Upon cooling, the solvent was evaporated to give a crude oil. The crude material was dissolved in THF (200 mL), cooled to 0 °C, and treated with aqueous Me₂NH (40 mL). The mixture was stirred at rt for 3 h, solvent was removed *in vacuo*, the residue was extracted with Et₂O (3 × 100 mL), and the crude oil was crystallized from heases/*i*-Pr₂O/acetone to give a white solid (18.55 g, 83%): mp 69–70 °C (lit.³⁵ bp 142–145° (4.1 mmHg)); ¹H NMR δ 2.90 (s, 3 H), 3.15 (s, 3 H), 7.31 (dd, 1 H, J = 4.8 and 7.5 Hz), 7.67 (dd, 1 H,

J = 1.8 and 7.5 Hz), 8.43 (dd, 1 H, J = 1.8 and 4.5 Hz); ¹³C NMR δ 34.66, 37.98, 122.64, 132.59, 136.83, 146.91, 149.89, 166.44.

Representative Procedure for Test Compounds Prepared by Scheme 1 (and in Table 3). N,N-Dimethyl 2-[[3-[4-(2-Methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide Hydrochloride (13ii). 1-(2-Methoxyphenyl)piperazine (5.03 g, 26.2 mmol), N-(3-bromopropyl)phthalimide (7.01 g, 26.2 mmol), and K₂CO₃ (3.62 g, 26.2 mmol) were suspended in DMF (60 mL) and heated to 90 °C for 4 h. The mixture was partitioned between H_2O and Et_2O (100 mL, 4×). The combined organic fractions were washed with brine and dried over MgSO₄, and solvent was evaporated. The crude material was purified by SGC (hexanes/EtOAc, 3:2, tr. Et₃N) to give a clear oil (8.60 g, 82%): ¹H NMR δ 1.91 (quin, 2 H, J = 6.9 Hz), 2.49 (t, 2 H, J = 6.9 Hz), 2.57 (broad s, 4 H), 2.92 (broad s, 4 H), 3.79 (t, 2 H, J = 6.9 Hz), 3.83 (s, 3 H), 6.79-7.01 (m, 4 H), 7.65-7.72 (m, 2 H), 7.83-7.89 (m, 2 H). To a solution of the phthalimide (8.60 g, 21.66 mmol) in absolute EtOH (60 mL) was added N₂H₄·H₂O (2.1 mL, 43.2 mmol). The mixture was heated to reflux for 3 h, cooled to rt, triturated with Et₂O, filtered, diluted with H₂O (70 mL) and 1 N NaOH (70 mL), and extracted with Et_2O (150 mL, 2×). The combined organic fractions were washed with brine and dried over MgSO₄, and the solvent was evaporated to give a clear oil. The crude oil (3.62 g, 13.5 mmol), 14ii (2.50 g, 13.5 mmol), and K₂CO₃ (1.86 g, 13.5 mmol) were suspended in anhydrous xylenes (50 mL) and heated to reflux for 20 h. After cooling to rt, the title compound was obtained following extraction [EtOAc (100 mL, $3\times$) and H₂O], drying (brine wash and MgSO₄), concentration, and SGC (CH₂Cl₂/MeOH, 96:4, tr. Et₃N) to give a clear oil, 13ii (2.6 g, 48%). A salt was obtained from a HCl/EtOH solution: mp 203.8–204.4 °C; ¹H NMR δ 1.95-2.10 (m, 2 H), 2.94 (broad s, 6 H), 3.12 (t, 2 H, J = 7.2Hz), 3.18-3.50 (m, 10 H), 3.79 (s, 3 H), 6.40 (s, broad, 1 H), 6.58 (dd, 1 H, J = 4.8, 7.2 Hz), 6.88-7.05 (m, 4 H), 7.37 (dd, 1 H, J = 1.8, 7.2 Hz), 8.08 (dd, 1 H, J = 1.8, 4.9 Hz); ¹³C NMR δ 23.5 (t), 37.9 (t), 46.9 (t), 51.1 (t), 53.6 (t), 55.4 (q), 111.1 (d), 111.9 (d), 115.9 (s), 118.2 (d), 120.8 (d), 123.4 (d), 135.7 (d), 139.5 (s), 148.3 (d), 151.8 (s), 154.4 (s), 167.9 (s); MS m/z 397 (M⁺), 382 (M⁺ loss of Me), 192. Anal. ($C_{22}H_{31}N_5O_2$ ·HCl) C, H. N.

2-[[3-[4-(2-Methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinonitrile hydrochloride (10): (39%) mp 190–192 °C. Anal. $(C_{20}H_{25}N_5O\cdot(HCl)_2)$ C, H, N.

N-*tert*-Butyl 2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide Oxalate (9). Compound 10 (380 mg, 0.89 mmol) was dissolved in a mixture of H_2SO_4 (0.75 mL) and *t*-BuOH (1.0 mL) and stirred at rt for 14 h. The reaction mixture was cooled to 0 °C, made basic with a 50% aqueous NaOH solution, and extracted with Et₂O (75 mL, 3×). The desired compound was obtained following drying (MgSO₄), concentration, and SGC (CH₂Cl₂/MeOH, 95:5, trace Et₃N) to give an oil which was converted into an oxalate salt **9** (400 mg, 83%): mp 89.0–91.0 °C. Anal. (C₂₄H₃₅N₅O₂(C₂H₂O₄)_{1.5}) C, H, N.

2-[[3-[4-(2-Methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide Hydrochloride (11). Compound **10** (400 mg, 0.94 mmol) was dissolved in an aqueous 90% solution of H_2SO_4 (15 mL) and stirred at 90 °C for 0.5 h. The reaction was cooled to 0 °C, made basic with a 50% aqueous NaOH solution, and extracted with CH_2Cl_2 (50 mL, 3×). The combined organic fractions were acidified with a HCl/EtOH solution and solvent removed to give a white solid **13** (227 mg, 51%): mp 240–242 °C. Anal. ($C_{20}H_{27}N_5O_2$ ·(HCl)₃) C, H, N.

N-Methyl-2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (13i): from *N*-methyl-2-chloronicotinamide (**14i**: mp 110.1–111.8 °C; lit.³⁵ mp 90– 92 °C) in 75% yield; mp 160.8–161.8 °C. Anal. (C₂₁H₂₉N₅O₂· (HCl)₃·(EtOH)_{0.65}) C, H, N.

Pyrrolidino-2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]-propyl]amino]nicotinamide hydrochloride (13iii): from **14iii** in 48% yield; mp 223.1–223.9 °C. Anal. ($C_{24}H_{33}N_5O_2$ ·HCl) C, H, N.

3-(2-Chloropyridyl) Cyclopropyl Ketone (14iv). Cyclopropyltributyltin³⁶ (3.2 g, 9.6 mmol) in THF (20 mL) at -78

°C was treated with *n*-BuLi (3.8 mL, 2.5 M, 9.5 mmol) and stirred at 0 °C for 0.5 h. The resulting solution was transferred to a -40 °C suspension of CuI (914 mg, 4.8 mmol) in THF (15 mL) and stirred for 45 min. 2-Chloronicotinyl chloride (793 mg, 4.5 mmol) was added in 10 mL of THF, and stirring was continued at -40 °C for an additional 1.5 h. Upon warming to rt, the reaction was quenched with aqueous NH₄Cl, stirred with CH₂Cl₂ (100 mL), and filtered, and the organic layer was separated. It was dried (Na₂SO₄), evaporated, and subjected to SGC, eluting with 9:1 hexanes:EtOAc. Ketone **14iv** was obtained as an oil (451 mg, 2.5 mmol, 55%): IR (neat) 3011, 1682 cm⁻¹; ¹H NMR δ 1.14–1.20 (m, 2 H), 1.36 (quin, 2 H, J = 3.8 Hz), 2.51–2.59 (m, 1 H), 7.33 (dd, 1 H, J = 4.5, 7.8 Hz), 7.83 (dd, 1 H, J = 1.8, 4.8 Hz); MS *m*/z 183 (M⁺ with³⁷Cl), 181 (M⁺ with³⁵Cl), 140 (M⁺ loss of Pr).

Cyclopropyl2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]pyrid-3-yl ketone maleate (13iv): 47% yield; mp 159.4–161.3 °C. Anal. (C₂₃H₃₀N₄O₂·C₄H₄O₄) C, H, N.

tert-Butyl 3-(2-chloropyridyl) ketone (14v): 77% yield prepared from 2-chloronicotinoyl chloride prepared as **14iv** was prepared: IR (neat) 2972, 1705 cm⁻¹; ¹H NMR δ 1.29 (s, 9 H), 7.27 (dd, 1 H, J = 1.8, 4.8 Hz), 7.50 (dd, 1 H, J = 2.4, 7.5 Hz), 8.43 (dd, 1 H, J = 1.8, 4.8 Hz); MS *m*/*z* 199 (M⁺ with ³⁷Cl), 197 (M⁺ with ³⁵Cl), 142 (M⁺ loss of Bu with ³⁷Cl), 140 (M⁺ loss of Bu with ³⁵Cl).

tert-Butyl 2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]pyrid-3-yl ketone maleate (16v): 41% yield; mp 122.3-126.0 °C. Anal. $(C_{24}H_{34}N_4O_2 \cdot (C_4H_4O_4)_{1.0} \cdot (H_2O)_{0.4})$ C, H, N.

N,N-Dimethyl-2-chloro-5-iodonicotinamide (15). A DMF (200 mL) solution of 2-hydroxynicotinic acid (13.3 g, 95.7 mmol) and NIS (33.6 g, 149 mmol) was stirred in an Al foil wrapped flask at rt for 4 days then heated to 50 °C for 15 h. A shortpath distillation head was attached, and the volatiles were removed at reduced pressure while the pot temperature was increased to 75 °C. Upon cooling, the pot residue was partitioned between H₂O and EtOAc. Solids were collected and dried in vacuo at 80 °C, providing 21.3 g of a gray powder. The 5-iodo acid [*ca.* 70% pure by ¹H NMR δ 7.71 (d, 1 H, J = 2.7 Hz), 8.03 (d, 1 H, J = 2.7 Hz); MS m/z 265 (M⁺), 221 (M⁺ loss of CO₂); 9.1 g, ca. 24 mmol] was suspended in SOCl₂ (35 mL) and 3 drops of DMF and heated to reflux for 3 h. A shortpath still head was attached, and the excess SOCl₂ was removed under 1 atm of N_2 and chased with 10–20 mL of DCE. Upon cooling and dilution with DCE (50 mL), the suspension was cooled to 0 °C and treated with Et₃N (8.5 mL, 61 mmol) and Me₂NH (13 mL, 2 M THF, 26 mmol). After 15 min at 0 °C, the dark solution was partitioned between aqueous NaH- CO_3 and CH_2Cl_2 (3 × 50 mL). The combined extracts were dried (Na₂SO₄), and the volatiles were removed and subjected to SGC (elute with 5:1 hexanes:acetone). The desired compound was obtained as a pale yellow solid (3.5 g, 11.3 mmol): mp 130.0–131.4 °C; IR 3040, 1628 cm $^{-1}$; $^1\!H$ NMR δ 2.92 (s, 3 H), 3.13 (s, 3 H), 7.94 (d, 1 H, J = 2.4 Hz), 8.63 (d, 1 H, J =2.4 Hz); MS m/z 311 (M⁺ with ³⁷Cl), 309 (M⁺ with ³⁵Cl), 266 $(M^+ loss Me_2N with {}^{35}Cl)$.

N,N-Dimethyl-2-chloro-5-cyanonicotinamide (14vi). A DMF solution of LiCN (20 mL, 0.5 M, 10 mmol) was evaporated to dryness and treated with the following: benzene (50 mL), 12-crown-4 (0.20 mL, 1.25 mmol), $[Ph_3P]_4Pd$ (2.2 g, 1.9 mmol), ¹⁶ and **15** (1.54 g, 5.0 mmol). The resulting suspension was stirred at 50 °C for 1 week, partitioned between pH 10 buffer and EtOAc (3 × 50 mL), dried (Na₂SO₄), and subjected to SGC (elute with 5:1 hexanes:acetone). Amide **14vi** was obtained as a solid (570 mg, 2.7 mmol, 54%): mp 148.0–152.5 °C; IR 3063, 2238, 1647 cm⁻¹; ¹H NMR δ 2.92 (s, 3 H), 3.17 (s, 3 H), 7.92 (d, 1 H, J = 2.4 Hz), 8.69 (d, 1 H, J = 2.4 Hz); MS m/z 211 (M⁺ with ³⁷Cl), 209 (M⁺ with ³⁵Cl), 167 (M⁺ loss Me₂N with ³⁷Cl), 165 (M⁺ loss Me₂N with ³⁵Cl).

N,N-Dimethyl-5-cyano-2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide oxalate (13vi): mp 126.0-128.5 °C. Anal. (C₂₃H₃₀N₆O₂·(C₂H₂O₄)_{1.5}) C, H, N.

N,N-Dimethyl-2-chloro-5-[[(2-methoxyethoxy)methyl]oxy]nicotinamide (13vii). A THF (80 mL) solution of **15** (2.18 g, 7.0 mmol) was cooled to -90 °C and treated with *t*-BuLi (9.8 mL, 1.5 M, 14.8 mmol) dropwise and stirred 10

min. A THF (30 mL) solution of (-)-(10-camphorsulfonyl)oxaziridine 16 (1.76 g, 7.7 mmol) was added rapidly via syringe, and stirring was continued for an additional 10 min. The desired phenol was obtained following aqueous NH₄Cl/ EtOAc (4 \times 50 mL) extraction, drying (Na₂SO₄), and SGC (elute with 2:1 hexanes:acetone) as a powder (478 mg, 34%): ¹H NMR δ 2.95 (s, 3 H), 3.17 (s, 3 H), 7.09 (d, 1 H, J = 2.7Hz), 7.97 (d, 1 H, J = 3.0 Hz), 9.2 (broad s, 1 H); MS m/z 202(M⁺ with 37 Cl), 200 (M⁺ with 35 Cl), 158 (M⁺ loss Me₂N with 37 Cl), 156 (M⁺ loss Me₂N with 35 Cl). The phenol (410 mg, 2.05 mmol) was dissolved in CH2Cl2 (20 mL) and (i-Pr)2NET (0.43 mL, 2.4 mmol) at 0 °C and treated with MEMCl (0.25 mL, 2.1 mmol). After 14 h at rt, the desired ether was obtained following extraction with aqueous NH_4Cl/CH_2Cl_2 (4 × 20 mL), drying (Na_2SO_4) , and filtration through a pad of SiO₂, as an oil (472 mg, 78%): ¹H NMR δ 2.92 (s, 3 H), 3.14 (s, 3 H), 3.36 (s, 3 H), 3.53-3.56 (m, 2 H). 3.81-3.84 (m, 2 H), 5.29 (s, 2 H), 7.40 (d, 1 H, J = 3.0 Hz), 8.22 (d, 1 H, J = 3.0 Hz).

N,*N*-Dimethyl-5-hydroxy-2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrobromide (13vii): mp 197.7–199.3 °C. Anal. $(C_{22}H_{31}N_5O_3 \cdot (HBr) \cdot (H_2O)_{0.3})$ C, H, N.

4,6-Dimethyl-2-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (17): 44% yield from 12 and 2-chloro-4,6-dimethylnicotinamide;¹⁸ mp 260.0–261.0 °C. Anal. ($C_{22}H_{31}N_5O_2$ ·(HCl)₃) C, H, N.

N,*N*-Dimethyl-4-[[3-[4-(2-methoxyphenyl)piperazin-1yl]propyl]amino]nicotinamide hydrochloride (18): 80% yield from *N*,*N*-dimethyl-4-chloronicotinamide; mp 169.5– 172.0 °C. Anal. ($C_{22}H_{31}N_5O_2$ ·(HCl)₃·(H₂O)_{1.6}) C, H, N.

N,*N*-Diisopropyl-4-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (19): 30% yield from *N*,*N*-diisopropyl-4-bromonicotinamide;²⁰ mp 128– 136 °C. Anal. ($C_{26}H_{39}N_5O_2$ ·(HCl)_{2.5}) C, H, N.

N,*N*-Dimethyl-6-[[3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrobromide (20): 16% yield from *N*,*N*-dimethyl-6-chloronicotinamide; mp 188–192 °C. Anal. $(C_{22}H_{31}N_5O_2 \cdot (HBr)_{1.2})$ C, H, N.

N,*N*-Dimethyl-4-[[3-[4-(2-methoxyphenyl)piperazin-1yl]propyl]amino]pyrimidine-5-carboxamide oxalate (21): 19% yield from *N*,*N*-dimethyl-4-chloropyrimidine-5-carboxamide; mp 103–112 °C. Anal. (C₂₁H₃₀N₆O₂·(C₂H₂O₄)_{2.2}) C, H, N.

Compounds Prepared According to Scheme 2. 3-[4-(2-Methoxyphenyl)piperazin-1-yl]-1-propanol. A mixture of 3-bromopropanol (10.5 mL, 116 mmol), 1-(2-methoxyphenyl)piperazine (21 g, 109.2 mmol), sodium iodide (16.4 g, 109 mmol), and K₂CO₃ (38 g, 275 mol) in 300 mL of acetonitrile was heated at reflux for 3 h. The mixture was cooled and filtered. The filtrate was washed with brine, dried (MgSO₄), and concentrated. The residue was purified by SGC, eluting with 5% MeOH/CH₂Cl₂. The title compound was obtained as a powder (24.5 g, 97.86 mmol): mp 88–89 °C; ¹H NMR δ 1.78 (m, 2 H, $CH_2CH_2CH_2$), 2.71 (t, 2 H, J = 5.9 Hz, NCH_2), 2.76 (m, 4 H, piperazine H), 3.10 (m, 4 H, piperazine H), 3.82 (t, 2 H, J = 5.2 Hz, CH₂OH), 3.86 (s, 3 H, OMe), 6.85-7.07 (m, 4 H, aromatic); ¹³C NMR δ 24.9 (t), 50.5 (t), 53.5 (t), 55.4 (q), 58.6 (t), 64.3 (t), 111.2 (d), 118.3 (d), 121.2 (d), 124.0 (d), 141.0 (s), 152.2 (s); HRMS calcd for C₁₄H₂₂N₂O₂ 250.1681, found 250.1677.

2-Amino-N,N,5-trimethylbenzamide (23ii). A mixture of 5-methyl-2-nitrobenzoic acid (10 g, 55.2 mmol) and (COCl)₂ (6 mL, 68.8 mmol) in 100 mL of CH₂Cl₂ was stirred under Ar at rt for 2 h. The mixture was concentrated, and the residue was evaporated twice with toluene. The residue was dissolved in 60 m ${\ensuremath{\tilde{L}}}$ of dioxane, and the solution was added dropwise to a mixture of aqueous Me₂NH (8.2 g, 40% w/w, 72.7 mmol) and NaOH (2.2 g, 55 mmol) in 20 mL of dioxane at 10 °C. The mixture was stirred at rt for 1 h and then poured into water. The mixture was extracted with EtOAc (2 \times 150 mL), dried (Na₂SO₄), filtered, and concentrated to give 11 g. This product and 5% Pd/C (1 g) in EtOH (100 mL) was stirred under H₂ for 18 h. Additional 5% Pd/C (1 g) was added, and the mixture was stirred for approximately 8 h. The mixture was filtered, and the filtrate was concentrated. 23ii was purified by SGC, eluting with 4% EtOH/CH2Cl2 (8 g, 44.9 mmol): mp 98-99

°C; ¹H NMR δ 2.22 (s, 3 H, ArC*H*₃), 3.05 (s, 6 H, N(C*H*₃)₂), 6.63 (d, 1 H, *J* = 8.1 Hz, H-3), 6.90 (d, 1 H, *J* = 1.5 Hz, H-6), 6.96 (dd, 1 H, *J* = 1.5, 8.1 Hz, H-4); ¹³C NMR δ 20.3 (q, *CH*₃-Ar), 38.0 (q, N(*CH*₃)₂), 116 (d, *C*-3), 120.7 (s, *C*-2), 126.7 (s, *C*-5), 128.1 (d, *C*-6), 131.1 (d, *C*-4), 142.8 (s, *C*-1), 171.2 (s, *C*(O)N); MS *m*/*z* 178 (M⁺). Anal. (C₁₀H₁₄N₂O·(H₂O)_{0.25}) C, H, N.

Representative Procedure for Targets Prepared According to Scheme 2. 2-[[3-[4-(2-Methoxyphenyl)piperazin-1-yl]propyl]amino]-N,N,5-trimethylbenzamide Hydrochloride (22ii). 3-[4-(2-Methoxyphenyl)piperazin-1-yl]-1-propanol (24 g, 95.87 mmol) dissolved in Et₃N (25 mL, 180 mmol) and CH₂Cl₂ (300 mL) was cooled to 0 °C, and then MsCl (8.8 mL, 114 mmol) was added dropwise. The mixture was stirred at 0 °C for 1 h and then at rt for 0.5 h. The mixture was poured into saturated Na₂CO₃ and stirred for 15 min. The organic phase was separated, washed with saturated Na₂CO₃ $(2 \times 150 \text{ mL})$, dried (MgSO₄), and concentrated to give 3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl methanesulfonate (21 g, 63.6 mmol). This product (656.8 mg, 2.0 mmol), 23ii (356.0 mg, 2.0 mmol), and K₂CO₃ (560.1 mg, 4.05 mmol) in CH₃CN (25 mL) were heated at reflux for 25 h. The mixture was poured into water and extracted with EtOAc (3×50 mL). 22ii (400 mg, 0.97 mmol, 48%) was obtained following drying (K_2 -CO₃), concentration, and SGC (eluant 6% MeOH/CH₂Cl₂), which formed a precipitate from 0.9 mL of 1 M HCl in MeOH and Et₂O: mp 85 °C dec; ¹H NMR δ 1.80–1.90 (m, 2 H), 2.22 (s, 3 H), 2.53 (t, 2 H, J = 7.0 Hz), 2.67 (broad s, 4 H), 3.04 (s, 6 H), 3.12 (broad s, 4 H), 3.17 (t, 2 H, J = 7.0 Hz), 3.86 (s, 3 H), 4.94 (broad s, 1 H), 6.63 (d, 1 H, J = 8.4 Hz), 6.84-7.05 (m, 6 H); 13 C NMR δ 20.1 (q), 26.3 (t), 42.2 (t), 50.3 (t), 53.41 (t), 55.3 (q), 56.3 (t), 111.1 (d), 111.6 (d), 118.2 (d), 120.1 (s), 120.9 (d), 122.8 (d), 124.8 (s), 128.2 (d), 131.1 (d), 141.2 (s), 144.3 (s), 152.2 (s), 171.4 (s); MS m/z 410 (M⁺). Anal. (C₂₄H₃₄N₄O₂·HCl·(H₂O)_{1.5}) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-methoxyphenyl)piperazin-1yl]propyl]amino]benzamide hydrochloride (22i): 66% yield from *N*,*N*-dimethyl-2-aminobenzamide, **23i**;³⁷ mp 74–79 °C. Anal. ($C_{23}H_{33}N_4O_2$ ·HCl·(H_2O)_{0.5}) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-methoxyphenyl)piperazin-1yl]propyl]oxy]benzamide hydrochloride (22iv): 13% yield from 23iv; mp 160–162 °C. Anal. (C₂₃H₃₁N₃O₃·(HCl)₂) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-methoxyphenyl)piperazin-1yl]propyl]thio]benzamide hydrochloride (22v): 27% yield from 23v; mp 174–177 °C. Anal. (C₂₃H₃₂N₃O₂S·HCl·H₂O) C, H, N.

2-[[3-[4-(2-Methoxyphenyl)piperazin-1-yl]propyl]amino]benzophenone hydrochloride (22vi): 21% yield from 2-aminobenzophenone; mp 96–165 °C. Anal. ($C_{27}H_{32}N_3O_2$ ·HCl·H₂O) C, H, N.

N,N-Dimethyl-2-[N-[4-(2-methoxyphenyl)piperazin-1yl]propanamido]benzamide Hydrochloride (22vii). 23i37 (1.75 g, 10.6 mmol) was dissolved in Et₃N (1.5 mL, 10.8 mmol) and CH₂Cl₂ (30 mL), cooled to 0 °C, treated with acryloyl chloride (1.0 mL, 12.3 mmol) dropwise, and then stirred at rt for 3 h. The bis-amide was obtained by filtration through a pad of Na₂SO₄ and concentrated to give 2.19 g as an oil, which was partially characterized: ¹H NMR δ 3.02–3.19 (m, 6 H), 5.75 (dd, 1 H, J = 1.5, 9.9 Hz), 6.25 (dd, 1 H, J = 9.9, 17.2 Hz), 6.39 (dd, 1 H, J = 1.5, 17.0 Hz), 7.11 (dt, 1 H, J = 1.2, 6.6 Hz), 7.26 (dd, 1 H, J = 1.6, 6.6 Hz), 7.42 (dt, 1 H, J = 1.5, 6.9 Hz), 8.35 (d, 1 H, J = 8.4 Hz), 9.36 (broad s, 1 H). The crude acrylamide was dissolved in THF (20 mL) and treated with o-MOPP-H (961 mg, 4.99 mmol), stirred at rt for 20 h, and heated to 45 °C for 6 h. The title compound 22vii was purified by SGC (1.1 g, 2.68 mmol, 56%; eluent 8% MeOH/CH₂Cl₂) and formed a solid from 1 M HCl/MeOH: mp 120 °C dec. Anal. (C23H30N4O3·(HCl)2) C, H, N.

Representative (Modified Prelog) Procedure for *N*-Phenylpiperazine Synthesis in Scheme 3. 1-[2-(2,2,2-Trifluoroethoxy)phenyl]piperazine Hydrochoride (24f).

A suspension of 2-nitrophenol (18.8 g, 135 mmol), 2,2,2trifluoroethyl tosylate (34.5 g, 135 mmol), and K₂CO₃ (18.7 g, 135 mmol) in DMF (200 mL) was heated to 140 °C for 15 h. The mixture was allowed to cool, poured into water (1 L) and extracted with 1:1 Et₂O:hexanes (4×200 mL). The combined organic phases were washed with water and then brine, dried (K_2CO_3) , and concentrated. The crude ether (27 g) was partially characterized: ¹H NMR δ 4.49 (q, 2 H, J = 7.8 Hz), 7.13 (dd, 1 H, J = 0.9, 8.1 Hz), 7.22 (dt, 1 H, J = 1.2, 7.5 Hz), 7.57 (dt, 1 H, J = 1.5, 7.5 Hz), 7.89 (dd, 1 H, J = 1.8, 8.1 Hz); MS m/z 221 (M⁺). The ether (13 g, *ca.* 60 mmol) was treated with 10% Pd/C (750 mg) in absolute EtOH and stirred under 1 atm H₂ for 16 h. Upon filtration through Florisil and concentration, the dark oil residue was immediately subjected to bis(2-chloroethyl)amine hydrochloride²³ (10.3 g, 57.6 mmol), NaI (2.2 g, 14.5 mmol), and K₂CO₃ (7.95 g, 57.6 mmol) in diglyme (30 mL), was slowly heated to reflux over 1 h, and then was held there for an additional 2.5 h. The mixture was allowed to cool, poured into pH 10 buffer (80 mL), and extracted with EtOAc (3 \times 60 mL). The combined organic phases were washed with 10% aqueous $Na_2S_2O_3$ and then brine, dried (Na₂SO₄), and concentrated, and **24f** was obtained following SGC (8.07 g, 54%, eluent gradient 2-6%MeOH/CH₂-Cl₂, tr. Et₃N) as an oil: ¹H NMR δ 2.45 (broad s, 1 H), 3.09 (s, 8 H), 4.41 (q, 2 H, J = 8.4 Hz), 6.89–7.08 (m, 4 H); ¹⁹F NMR δ -72.5 (t, J = 30.5 Hz); MS m/z 260 (M⁺), 218 (M⁺ loss of CH₂CH₂NH). The free base was treated with 2 M HCl/EtOH and EtOAc: mp 172.3-173.3 °C. Anal. (C12H15F3N2O·HCl· (H₂O)_{0.8}) C, H, N.

1-[2-(Trifluoromethoxy)phenyl]piperazine (24e) was obtained as a paste (31% from 2-(trifluoromethoxy)aniline): ¹H NMR δ 2.05 (broad s, 1 H), 3.04 (m, 8 H), 6.97–7.01 (m, 2 H), 7.16–7.23 (m, 2 H); MS *m*/*z* 246 (M⁺), 204 (M⁺ loss of CH₂-CH₂NH).

1-[2-[(2,2-Dimethylpropyl)oxy]phenyl]piperazine (24h) was obtained from 2-nitrophenol (*via* a Mitsunobo reaction with neopentyl alcohol and then Prelog chemistry as above) as an oil: ¹H NMR δ 1.08 (s, 9 H), 2.1 (broad s, 1 H), 3.08 (m, 8 H), 3.64 (s, 2 H), 6.82–6.97 (m, 4 H); MS *m*/*z* 248 (M⁺), 206 (M⁺ loss of CH₂CH₂NH).

1-(2-Biphenylyl)piperazine (24i) was obtained as an oil (75% from 2-aminobiphenyl): ¹H NMR δ 2.33 (broad s, 1 H), 2.72–2.87 (m, 8 H), 7.00–7.09 (m, 1 H), 7.18 (d, 1 H, J = 7.2 Hz), 7.21–7.44 (m, 6 H), 7.65 (td, 1 H, J = 1.5, 6.9 Hz); MS m/z 238 (M⁺), 196 (M⁺ loss of CH₂CH₂NH).

1-(2-Cyclopropylphenyl)piperazine (24p) (41% yield from 2-cyclopropylnitrobenzene): mp 87.9–91.5 °C; ¹H NMR δ 0.68–0.74 (m, 2 H), 0.95–1.01 (m, 2 H), 2.02 (broad s, 1 H), 2.25–2.38 (m, 1 H), 2.96–3.10 (m, 8 H), 6.77 (dd, 1 H, J = 1.5, 7.8 Hz), 6.97–7.04 (m, 2 H), 7.12 (dt, 1 H, J = 1.5, 6.9 Hz); MS *m*/*z* 202 (M⁺), 160 (M⁺ loss of CH₂CH₂NH).

1-[2-(Trifluoromethyl)phenyl]piperazine (24r) was obtained as an oil (15% from 2-aminobenzotrifluoride): ¹H NMR 1.88 (broad s, 1 H), 2.88–3.03 (m, 8 H), 7.21 (t, 1 H, J = 7.5 Hz), 7.37 (d, 1 H, J = 8.1 Hz), 7.49 (t, 1 H, J = 7.5 Hz), 7.62 (d, 1 H, J = 7.8 Hz).

1-(4-Fluoro-2-methoxyphenyl)piperazine hydrochloride (24t) (43% from 5-fluoro-2-nitrophenol): mp 202.3–204.0 °C (Et₂O/EtOH); ¹H NMR δ 3.21–3.36 (m, 8 H), 3.85 (s, 3 H), 6.20 (broad s, 2 H), 6.59–6.64 (m, 2 H), 6.82–6.89 (m, 1 H); ¹⁹F NMR δ –121.3 (q, J= 0.1 Hz); MS m/z 210 (M⁺), 168 (M⁺ loss of CH₂CH₂NH). Anal. (C₁₁H₁₅FN₂O·(HCl)₂·(H₂O)_{0.5}) C, H, N.

1-(2-Methoxy-4-methylphenyl)piperazine (24w) was obtained as an oil (47% yield from 5-methyl-2-nitrophenol): ¹H NMR δ 1.62 (broad s, 1 H), 2.31 (s, 3 H), 2.96–3.10 (m, 8 H), 3.85 (s, 3 H), 6.66–73 (m, 2 H), 6.83 (d, 1 H, J = 8.1 Hz); MS m/z 206 (M⁺), 164 (M⁺ loss of CH₂CH₂NH).

1-(2-Isopropylphenyl)piperazine hydrobromide (24q) was prepared according to Poindexter *et al.*²⁴ (36% yield from 2-isopropylaniline): mp 240.0–241.3 °C; ¹H NMR δ 1.16 (d, 6 H, *J* = 6.9 Hz), 2.98 (t, 4 H, *J* = 4.8 Hz), 3.23 (t, 4 H, *J* = 4.5 Hz), 3.41 (sept, 1 H, *J* = 6.9 Hz), 7.10–7.22 (m, 4 H); MS *m*/*z* 204 (M⁺), 162 (M⁺ loss of CH₂CH₂NH). Anal. (C₁₃H₂₀N₂·HBr·(H₂O)_{0.3}) C, H, N.

1-[2-(Oxazol-2-yl)phenyl]piperazine (24j). 2-Fluorobenzoyl chloride (4.50 g, 28.5 mmol), Et₃N (15.8 mL, 114 mmol), and 2-bromoethylamine hydrobromide (5.52 g, 27.0 mmol) were added to CH₂Cl₂ and heated to reflux for 24 h. The reaction mixture was cooled to rt, quenched with water, and then extracted with CH_2Cl_2 (150 mL, 3×). The combined organic fractions were washed with brine, dried (MgSO₄), and concentrated. The crude oil was purified by SGC (hexanes/ acetone, 4:1) to give 2-(2-fluorophenyl)oxazoline (3.94 g, 84%) as an oil: ¹H NMR δ 4.04–4.15 (m, 2 H), 4.31–4.41 (m, 2 H), 7.09-7.22 (m, 2 H), 7.38-7.48 (m, 1 H), 7.86 (dt, 1 H, J=1.4, 8.1 Hz); ¹³C NMR δ 55.16, 67.01, 116.37, 116.67, 123.81, 130.92, 132.64, 161.07 (d, J = 257 Hz), 161.10 (d, J = 5.99Hz); EIMS m/z 165 (M⁺), 135, 123, 95, 75. Anal. (C₉H₈FNO) C, H, N. The oxazoline (2.50 g, 15.1 mmol) and NiO₂·xH₂O (25 g, 10 equiv by wt)³⁸ were added to benzene (150 mL) and heated to reflux for 24 h. The reaction was cooled to rt and filtered (Whatman, glass microfibre filters, GF/F) and the solvent removed to give an oil (2.02 g, 12.4 mmol, 80%). The crude oil was used directly in the next step. N-Benzylpiperazine (5.1 g, 29.5 mmol) was dissolved in THF (20 mL) and cooled to 0 °C, and n-BuLi (11.8 mL, 29.5 mmol, 2.5 M/hexane) was slowly added. The mixture was stirred for 1 h followed by the addition of the above crude oxazole (1.20 g, 7.36 mmol) in THF (5 mL). The reaction was warmed to rt over 0.5 h, guenched with water, and extracted with Et₂O (100 mL, $3\times$). The combined organic fractions were washed with brine and dried (MgSO₄), and the solvent was removed to give a yellow oil. 10% Pd/C catalyst (400 mg) was suspended in MeOH and a solution of the above crude oil in MeOH added. The reaction was stirred under H₂ (1 atm) for 24 h. The mixture was filtered (Whatman, glass microfibre filter, GF/F) and the solvent removed to give an oil. The residue was purified by SGC (CH₂Cl₂/MeOH, 97:3, tr. Et₃N) to give a clear oil, 24j (870 mg, 51%): ¹H NMR δ 2.82 (broad s, 1 H), 2.89–2.97 (m, 4 H), 3.02-3.10 (m, 4 H), 7.05-7.12 (m, 2 H), 7.26 (d, 1 H, J = 0.6Hz), 7.36–7.45 (m, 1 H), 7.74 (d, 1 H, J = 0.6 Hz), 7.83–7.89 (m, 1 H); 13 C NMR δ 46.0, 53.2, 118.8, 119.1, 121.3, 122.3, 128.2, 131.4, 138.2, 151.7, 161.8; MS m/z 229 (M⁺), 212, 199, 173. Anal. (C₁₃H₁₅N₃O) C, H, N.

1-[4-Fluoro-2-(oxazol-2-yl)phenyl]piperazine (24y) as an oil, 13% overall from 2,5-difluorobenzoyl chloride: ¹H NMR δ 2.41 (broad s, 1 H), 2.89–2.98 (m, 4 H), 3.03–3.10 (m, 4 H), 7.07–7.12 (m, 2 H), 7.27 (d, 1 H, J= 0.75 Hz), 7.59–7.64 (m, 1H), 7.75 (d, 1 H, J= 0.78 Hz); ¹³C NMR δ 46.2, 53.9, 117.5 (d, J= 25 Hz), 117.7 (d, J= 22 Hz), 120.9 (d, J= 8.0 Hz), 123.0, 128.4, 138.6, 148.2, 157.5 (d, J= 241 Hz), 160.6; MS m/z 247 (M⁺), 217, 191; HRMS calcd for C₁₃H₁₄FN₃O 247.1121, found 247.1120.

1-(3-Methylpyrid-4-yl)piperazine (24l). 4-Chloro-3-methylpyridine¹⁹ (2.32 g, 18.2 mmol) and N-formylpiperazine (4.7 mL, 45.5 mmol) were dissolved in NMP (10 mL) and heated to 90 °C for 16 h. The mixture was cooled, partitioned between water and EtOAc (8 \times 30 mL), dried (Na₂SO₄), and purified by SGC (0-5% gradient MeOH/CH₂Cl₂) to give an oil (1.8 g, 46%): ¹H NMR δ 2.29 (s, 3 H), 2.96–3.04 (m, 4 H), 3.55 (dd, 2 H, J = 5.1, 6.6 Hz), 3.73 (dd, 2 H, J = 5.1, 5.4 Hz), 6.78 (d, 1 H, J = 5.4 Hz), 8.11 (s, 1 H), 8.34 (d with predominant s, 2 H, J = 5.7 Hz); ¹³C NMR δ 17.7, 30.7, 40.1, 45.7, 50.0, 113.2, 126.2, 148.8, 152.3, 160.9, 175.4. The oil (1.75 g) was treated with MeOH (20 mL) and aqueous NaOH (2 mL, 5 M) and boiled for 5.5 h. The mixture was concentrated and used crude in subsequent alkylation chemistry: ¹H NMR δ 2.26 (s, 3 H), 2.96-3.07 (m, 8 H), 6.79 (d, 1 H, J = 5.4 Hz), 8.28 (s, 1 H), 8.31 (d, 2 H, J = 5.4 Hz).

1-[4-Methyl-2-(1-pyrrolyl)phenyl]piperazine (24x). 4-Chloro-3-nitrotoluene (29.2 g, *ca.* 170 mmol) and *N*-formylpiperazine (22.8 mL, 221 mmol) were dissolved in DMF (50 mL) and heated to 100 °C for 16 h. The mixture was cooled, partitioned between water and EtOAc (8×100 mL), dried (Na₂SO₄), and purified by SGC (50–100% gradient hexanes/ EtOAc) to give an oil (11.2 g, 26%): ¹H NMR δ 2.37 (s, 3 H), 2.96–3.04 (m, 4 H), 3.51 (t, 2 H, J= 5.1 Hz), 3.71 (t, 2 H, J= 5.1 Hz), 7.08 (d, 1 H, J= 8.4 Hz), 7.33 (dd, 1 H, J= 1.5, 8.4 Hz), 7.60 (d, 1 H, J= 1.2 Hz), 8.08 (s, 1 H). The oil (6.2 g) was sequentially treated with 1 atm of H₂ [10% Pd/C (1 g), EtOH (70 mL), 20 h, rt] and 2,5-dimethoxy-THF [(4.4 mL, 33.6 mmol), glacial HOAc (20 mL), 2 h, 105 °C]. The residue was subjected to SGC (2:1 hexanes:acetone, tr. Et₃N) to yield a pyrrole (2.5 g, 39%): ¹H NMR δ 2.32 (s, 3 H), 2.59–2.72 (m, 4 H), 3.32 (t, 2 H, J= 5.1 Hz), 3.55 (t, 2 H, J= 5.4 Hz), 6.29 (t, 2 H, J= 2.1 Hz), 6.89 (d, 1 H, J= 8.7 Hz), 7.02 (t, 2 H, J= 2.1 Hz), 7.06–7.20 (m, 2 H), 8.00 (s, 1 H); MS *m*/*z* 269 (M⁺), 240, 197, 183. The pyrrole (512 mg, 1.90 mmol) was treated with NaOH (8 mL, 1 M MeOH) and stirred at 50 °C for 2.7 d. **24x** was obtained upon extraction from water and CH₂Cl₂ (4 × 20 mL), drying (MgSO₄), filtration, and concentration as an oil (452 mg, 10% yield overall): ¹H NMR δ 2.06 (broad s, 1 H), 2.31 (s, 3 H), 2.61 (t, 4 H, J= 4.5 Hz), 2.85 (t, 4 H, J= 4.5 Hz), 6.27 (t, 2 H, J= 2.4 Hz), 6.92 (d, 1 H, J= 8.7 Hz), 7.02–7.07 (m, 4 H).

Compounds Reported in Table 3. *N,N*-Dimethyl-2-[[3-(4-phenylpiperazin-1-yl)propyl]amino]nicotinamide oxalate (25a): mp 104.4–104.9 °C. Anal. ($C_{21}H_{29}N_5O$ · ($C_2H_2O_4$)_{1.5}·(H_2O)_{0.25}) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-cyanophenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25b) from a HCl/EtOH solution: mp 129 °C dec. Anal. (C₂₂H₂₈N₆O· (HCl)₃·(EtOH)_{0.15}·(EtOAc)_{0.15}·(H₂O)_{1.3}) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-hydroxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide fumarate (25c): mp 181.2–183.9 °C. Anal. $(C_{21}H_{29}N_5O_2 \cdot (C_4H_4O_4)_{0.5} \cdot H_2O)$ C, H, N.

N,N-Dimethyl-2-[[3-[4-(2-ethoxyphenyl)piperazin-1-yl]-propyl]amino]nicotinamide oxalate (25d): mp 138.0–140.0 °C. Anal. $(C_{23}H_{33}N_5O_2 \cdot C_2H_2O_4)$ C, H, N.

N,*N*-Dimethyl-2-[[3-[4-[2-(trifluoromethoxy)phenyl]piperazin-1-yl]propyl]amino]nicotinamide oxalate (25e): mp 142.5-145.0 °C. Anal. ($C_{22}H_{28}F_{3}N_5O_2$ · $C_2H_2O_4$) C, H, N.

N,N-Dimethyl-2-[[3-[4-[2-(2,2,2-trifluoroethoxy)phenyl]piperazin-1-yl)propyl]amino]nicotinamide hydrochloride (25f): mp 122 °C dec. Anal. $(C_{23}H_{30}F_3N_5O_2 \cdot (HCl)_{2.5} \cdot$ (EtOAc)_{0.1}) H, N; C: 49.70; found, 50.26.

N,N-Dimethyl-2-[[3-[4-[2-(cyclopropylmethoxy)phenyl]piperazin-1-yl]propyl]amino]nicotinamide oxalate (25g): mp 117.5-123.0 °C. Anal. ($C_{25}H_{35}N_5O_2 \cdot C_2H_2O_4 \cdot (H_2O)_{0.65}$) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-[2-[(2,2-dimethylpropyl)oxy]phenyl]piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25h): mp 111–125 °C. Anal. (C₂₃H₃₉N₅O₂·(HCl)_{1.6}) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-biphenylyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25i): mp 195.8–196.8 °C. Anal. $(C_{27}H_{33}N_5O\cdot(HCl)_2\cdot(H_2O)_{0.25})$ C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-oxazol-2-ylphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25j): mp 102–104 °C. Anal. (C₂₄H₃₀N₆O₂·(HCl)₂) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-methylphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25k): mp 67 °C dec. Anal. ($C_{22}H_{31}N_5O\cdot(HCl)_3$) C, H, N.

N,N-Dimethyl-2-[[3-[4-(2-methylpyrid-4-yl)piperazin-1-yl]propyl]amino]nicotinamide hydrobromide (251): mp 178.4–183 °C. Anal. ($C_{21}H_{30}N_6O$ ·(HBr)₃·H₂O) C, H, N.

 $\textit{N,N-Dimethyl-2-[[3-[4-[2-(methylthio)phenyl]piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25m): mp 137–143 °C. Anal. (C22H31N5OS·(HCl)2) C, H, N.$

N,N-Dimethyl-2-[[3-[4-(2-*n*-propylphenyl)piperazin-1-yl]propyl]amino]nicotinamide oxalate (25n): mp 127.1–127.5 °C. Anal. ($C_{24}H_{35}N_5O\cdot C_2H_2O_4$) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2-benzylphenyl)piperazin-1-yl]propyl]amino]nicotinamide oxalate (250): mp 127–130 °C. Anal. ($C_{28}H_{35}N_5O\cdot C_2H_2O_4$) C, H, N.

 $\textit{N,N-Dimethyl-2-[[3-[4-(2-cyclopropylphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25p): mp 124–133 °C. Anal. (C_{24}H_{33}N_5O\cdot(HCl)_2) C, H, N.$

N,*N*-Dimethyl-2-[[3-[4-(2-isopropylphenyl)piperazin-1-yl]propyl]amino]nicotinamide oxalate (25q): mp 119.0–121.0 °C. Anal. ($C_{24}H_{35}N_5O\cdot(C_2H_2O_4)_{2.5}$) C, H, N.

N,*N*-Dimethyl 2-[[3-[4-[2-(trifluoromethyl)phenyl]piperazin-1-yl]propyl]amino]nicotinamide oxalate (25r): mp 132.5-133.5 °C. Anal. (C₂₂H₂₈F₃N₅O·(C₂H₂O₄)_{1.5}) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2,6-dimethylphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25s): mp 98-125 °C. Anal. ($C_{23}H_{33}N_5O$ ·HCl·(H_2O)_{0.5}) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(4-fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochloride (25t): mp 228.4–229.1 °C; ¹H NMR δ 1.95–2.10 (m, 2 H), 2.94 (s, 3 H), 3.08–3.55 (m, 12 H), 3.80 (s, 3 H), 6.36 (s, broad, 1 H), 6.58 (dd, 1 H, J = 4.95, 7.29 Hz), 6.70 (dt, 1 H, J = 2.80, 8.46 Hz), 6.90 (m, 2 H), 7.37 (dd, 1 H, J = 1.83, 7.29 Hz), 8.08 (dd, 1 H, J = 1.85, 4.97); ¹³C NMR δ 23.5, 37.8, 47.1, 51.1, 53.6, 55.8, 100.3 (d, J = 26.90 Hz), 106.0 (d, J = 21.52 Hz), 111.1, 115.9, 118.9 (d, J = 9.91 Hz), 135.6, 136.0, 148.2, 153.0 (d, J = 10.12 Hz), 154.4, 157.2, 160.3, 167.9; ¹⁹F NMR δ −117.6; EIMS m/z 415 (M⁺), 235, 209, 192. Anal. (C₂₂H₃₀-FN₃O₂·HCl) C, H, N.

N,N-Dimethyl-2-[[3-[4-(4-hydroxy-2-methoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide Hydrochoride (25u). An aqueous solution of 40% HBr (30 mL) and (2,4dimethoxyphenyl)piperazine (3.1 g, 13.9 mmol) was heated to reflux³⁹ for 30 h and cooled, and the volatiles were removed. The residue (4.6 g) was dissolved in 20 mL each of saturated NaHCO3 and THF while N2 was bubbled into the mixture. Ditert-butyl dicarbonate (3.3 g, 15 mmol) was added in one portion and stirred at rt for 5 h. The mixture was partitioned between EtOAc (5 \times 50 mL) and water. 1-(tert-Butylcarbonyl)-4-(4-hydroxy-2-methoxyphenyl)piperazine was obtained following drying, filtration, and removal of volatiles (oven temperature ca. 50 °C) as a solid (1.40 g, 4.56 mmol, 33%): 213.6-214.3 °C; ¹H NMR δ 1.41 (s, 9 H), 2.44-2.51 (m, 4 H), 3.37-3.42 (m, 4 H), 3.71 (s, 3 H), 6.25 (dd, 1 H, J = 2.4, 8.4 Hz), 6.37 (d, 1 H, J = 2.4 Hz), 6.70 (d, 1 H, J = 8.4 Hz), 9.05 (broad s, 1 H); MS *m*/*z* 308 (M⁺), 252 (M⁺ loss of Bu + H). The phenol (1.26 g, 4.1 mmol) was dissolved in DMF (20 mL), treated with BnBr (0.54 mL, 4.5 mmol) and Cs₂CO₃ (1.46 g, 4.5 mmol), and stirred at rt for 18 h. The benzyl ether (1.59 g) was isolated by standard workup and SGC (elute with 2:1 hexanes:EtOAc). It was subsequently treated with TFA [(10 mL) in CH₂Cl₂ (20 mL), rt, 1 h], N-(3-bromopropyl)phthalimide [(1.57 g, 5.9 mmol), K₂CO₃ (660 mg, 7.2 mmol) in DMF (9 mL), 80 °C, 16 h], N₂H₄·H₂O [(1 mL, 18 mmol), EtOH (25 mL), 80 °C, 1 h], 14ii [(660 mg, 3.6 mmol), K₂CO₃ (510 mg, 3.7 mmol) in xylene (12 mL) 140 °C, 21 h], and 10% Pd/C (150 mg) with NH₄CO₂H (550 mg, 8.7 mmol) in boiling MeOH. The title compound was isolated by filtration and SGC (eluant: 6% MeOH/CH2Cl2, 420 mg, 22%) and formed an amorphous solid with HCl/EtOH: mp 165 °C dec. Anal. (C₂₂H₃₁N₅O₃·(HCl)₃) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(2,4-dimethoxyphenyl)piperazin-1-yl]propyl]amino]nicotinamide hydrochoride (25v): mp 80 °C dec. Anal. $(C_{23}H_{33}N_5O_3 \cdot (HCl)_2 \cdot (EtOAc)_{0.5} \cdot (H_2O)_{1.3})$ C, H. N.

N,*N*-Dimethyl-2-[[3-[4-(2-methoxy-4-methylphenyl)piperazin-1-yl]propyl]amino]nicotinamide oxalate (25w): mp 89.5–96.5 °C. Anal. ($C_{23}H_{33}N_5O_2 \cdot C_2H_2O_4 \cdot (H_2O)_{1.1}$) C, H, N.

N,*N*-Dimethyl-2-[[3-[4-(4-methyl-2-pyrrol-1-ylphenyl)piperazin-1-yl]propyl]amino]nicotinamide fumarate (25x): mp 125–148 °C. Anal. (C₂₆H₃₄N₆O·(C₄H₄O₄)_{3.25}·(H₂O)₂) C, H, N.

Compounds Prepared in Scheme 4. 2-[2-(2,2,2-Trifluoroethoxy)phenoxy]ethanol (27a). A mixture of catechol (28.45 g, 259 mmol), ethylene carbonate (22.76 g, 259 mmol), and *n*-BuN₄Br (1.7 g, 5.2 mmol) was heated to 180 °C until gas evolution subsided (about 3.5 h). The mixture solidified upon cooling and was recrystallized from hot water. A tan solid was collected after sitting overnight at rt and furnished 25.8 g of the desired phenol upon being dried in vacuo at 70 °C. The phenol (5 g, 32 mmol), K₂CO₃ (4.9 g, 35.6 mmol), and 2,2,2-trifluoroethyl methanesulfonate (4.2 mL, 35.6 mmol) were suspended in DMF (65 mL) and heated to 100 °C for 18 h. Upon cooling, the mixture was partitioned between water (200 mL) and 1:1 hexanes: EtOAc (3×150 mL). The organic extract was washed with water and brine and stored over Na₂SO₄. 27a was obtained as an oil (3.8 g, 16 mmol) after SGC, eluant 4:1 hexanes: EtOAc: R_f (3:2 hexanes: acetone) 0.34; ¹H NMR δ 2.27 (t, 1 H, J = 6.3 Hz, OH), 3.95–4.00 (m, 2 H, CH₂OH), 4.14 (t, 2 H, J = 4.9 Hz, OCH₂CH₂), 4.38 (q, 2 H, J = 8.3 Hz, OCH₂CF₃), 6.96–7.09 (m, 4 H, C₆H₄); EIMS *m*/*z* 236 (M⁺), 192 (M⁺ loss of CH₂CH₂OH), 109.

2-[2-(Pyrimid-5-yl)phenoxy]ethanol (27b). A suspension of 2-iodophenol (6.22 g, 28.0 mmol), 2-bromoethyl acetate (3.72 mL, 33.6 mmol), NaI (4.24 g, 28 mmol), and Cs₂CO₃ (9.6 g, 29.5 mmol) in DMF (70 mL) was stirred at rt for 10 d. The mixture was partitioned between H_2O and Et_2O :hexanes (1:1) 4×100 mL), dried (brine wash and Na₂SO₄), concentrated, and subjected to SGC (eluant 7:1 hexanes:EtOAc) to obtain an oil (5.93 g). The ester (2.71 g, 8.8 mmol) was treated with MeOH (10 mL) and NaOH (1.4 g, 35 mmol in 5 mL H₂O) at 40 °C for 1 h. The mixture was cooled, partitioned between aqueous NH₄Cl and EtOAc (3 \times 50 mL), dried (MgSO₄), filtered, and concentrated. The residue was dissolved in THF (25 mL), cooled to 0 °C, and treated with NaH (60% with oil, 350 mg, 8.8 mmol). After 2 h of stirring, the resulting solution was cooled to -78 °C and treated sequentially with *t*-BuLi (10.7 mL, 1.5 M, 16.0 mmol for 40 min) and (MeO)₃B (1.8 mL, 16.0 mmol) and allowed to warm to rt overnight. The dark suspension was quenched with 10% aqueous HOAc, stirred 10 min, and extracted with Et₂O (2×50 mL). Upon drying (Na₂SO₄) and concentration, half of the residue (*ca.* 4.2 mmol) was treated with dioxane (25 mL), 5-bromopyrimidine (572 mg, 3.6 mmol), [Ph₃P]₄Pd (105 mg, 0.09 mmol), and K₃PO₄ (1.53 g, 7.2 mmol) and heated to 85 °C for 20 h.27 The title compound was obtained following extraction with aqueous NH₄Cl and EtOAc (4×50 mL), drying (Na₂SO₄), concentration, and SGC (eluant 2:1 to 1:1 gradient of hexanes:acetone) as a white solid: mp 88.4–89.8 °C; ¹H NMR δ 3.38 (t, 1 H, J = 6.0 Hz), 3.91-3.97 (m, 2 H), 4.16 (t, 2 H, J = 5.7 Hz), 7.05 (d, 1 H, J = 8.1 Hz), 7.08 (dt, 1 H, J = 0.9, 7.5 Hz), 7.31 (dd, 1 H, J = 1.5, 8.1 Hz), 7.42 (dt, 1 H, J = 1.8, 7.5 Hz), 8.91 (s, 2 H), 9.03 (s, 1 H); MS m/z 216 (M⁺), 172 (M⁺ loss of CH₂CH₂-OH)

4-[[2-[2-(2,2,2-Trifluoroethoxy)phenoxy]ethyl]amino]-3,4,5,6-tetrahydro-2H-[1,2']bipyridinyl-3'-carboxylic Acid Dimethylamide Fumarate (28a). 27a (2.13 g, 9.0 mmol) was sequentially treated with MsCl [(0.84 mL, 10.8 mmol) CH2-Cl₂ (30 mL), Et₃N (2.5 mL, 18.0 mmol), 15 min, 0 °C], 4-amino-1-benzylpiperidine [(740 mg, 3.8 mmol), K₂CO₃ (536 mg, 3.88 mmol), CH₃CN (25 mL), reflux, 18 h], 1 atm of H₂ [wet, Degussa type E101 10% Pd/C (250 mg), MeOH (20 mL), 4 h], and 14ii [(286 mg, 1.55 mmol), $\rm K_2CO_3$ (214 mg, 1.55 mmol), xylenes (10 mL), 140 °C, 6 h]. The title compound was obtained (400 mg, 9% overall) following SGC (eluant CH₂Cl₂: MeOH, 95:5) and treatment with an Et₂O:MeOH solution of fumaric acid: mp 152–153 °C; ¹H NMR δ 1.32–1.48 (m, 2H), 1.91-2.06 (m, 2 H), 2.78-2.96 (m with predominant s, 8 H), 2.99 (s, 3 H), 3.10 (t, 3 H, J = 5.3 Hz), 3.64-3.84 (m, 2 H), 4.15 (t, 2 H, J = 5.3 Hz), 4.66 (q, 2 H, J = 9.0 Hz), 6.52 (s, 1 H), 6.84 (dd, 1H, J = 4.9, 7.4 Hz), 6.90–7.10 (m, 4 H), 7.46 (dd, 1H, J = 1.7, 7.3 Hz), 8.20 (dd, 1H, J = 1.7, 4.7 Hz); ¹³C NMR δ 30.8, 34.2, 37.5, 44.1, 46.0, 54.1, 66.4 (q, J = 33 Hz), 67.5, 114.6, 114.9, 116.6, 121.1, 121.2, 122.1, 123.4, 126.5 (q, J = 277.5 Hz), 134.7, 137.2, 146.8, 147.9, 148.6, 156.4, 169.2; EIMS m/z 466 (M⁺). Anal. (C₂₃H₂₉F₃N₄O₃·(C₄H₄O₄)_{0.5}) C, H, N.

4-[[2-[2-(Pyrimid-5-yl)phenoxy]ethyl]amino]-3,4,5,6tetrahydro-2*H*-[1,2']bipyridinyl-3'-carboxylic acid dimethylamide hydrobromide (28b): mp 229.0–233.0 °C dec. Anal. ($C_{25}H_{30}N_6O_2$ ·(HBr)_{0.75}) C, H, N.

4-[[2-(2-Ethoxyphenoxy)ethyl]amino]-3,4,5,6-tetrahydro-2*H*-[1,2']bipyridinyl-3'-carboxylic acid dimethylamide hydrochloride (28c): mp 129.1–132.1 °C. Anal. $(C_{23}H_{34}F_3N_4O_3$ ·(HCl)₂·(H₂O)_{2.5}) C, H, N.

Representative Procedure for the Annulation of Anilines (and Aminoheterocycles) to Quinoline-3-carboxamides, Scheme 5: *N,N***Dimethyl-4-chloro-8-iodoquinoline-3-carboxamide (34).** A flask containing 2-iodoaniline (2.9 g, 13.2 mmol) and diethyl (ethoxymethylene)malonate (2.7 mL, 14.0 mmol) was equipped with a short-path distillation head and heated to 120 °C. Over 0.2–4 h, ethanol is collected. The pot residue was cooled and recrystallized from hot *n*-heptane. Diethyl *N*-amino-(2-iodophenyl)methylenemalonate (4.86 g, 12.5 mmol, 94%) was obtained as a flakey white

solid: mp 112.2-112.5 °C; IR 3436, 1682, 1641, 1597 cm⁻¹; ¹H NMR δ 1.33 (t, 3 H, J = 7.2 Hz), 1.39 (t, 3 H, J = 7.2 Hz), 4.26 (q, 2 H, J = 7.2 Hz), 4.36 (q, 2 H, J = 7.2 Hz), 6.88 (dt, 1 H, J = 1.2, 7.5 Hz), 7.22 (dd, 1 Ĥ, J = 1.5, 8.1 Hz), 7.39 (dt, 1 H, J = 1.5, 8.4 Hz), 7.84 (dd, 1 H, J = 1.5, 7.8 Hz), 8.44 (d, 1 H, J = 13.2 Hz), 11.09 (d, 1 H, J = 12.9 Hz); MS m/z 389 (M⁺), 343 (M⁺ loss of OEt). The adduct (3.76 g, 9.7 mmol) was treated with (i-Pr)₂NEt (2.0 mL, 11.6 mmol) and POCl₃ (6.8 mL, 73 mmol) and heated to reflux in xylenes (35 mL). After 14 h, the dark mixture was distilled to ca. 10 mL of residue, cooled to rt, poured into ice, extracted with Et₂O (5×30 mL), washed with saturated NaHCO₃ and then brine, and stored over Na₂SO₄. Ethyl 4-chloro-8-iodoquinoline-3-carboxamide was obtained following SGC (eluant: 8:1 hexanes:EtOAc) as tan powder (2.304 g, 66%): mp 81.5–82.9 °C; ¹H NMR δ 1.46 (t, 3° H, J = 7.2 Hz), 4.51 (q, 2° H, J = 7.2 Hz), 7.42 (t, 1 H, J = 7.5 Hz), 8.43 (dd, 1 H, J = 1.2, 8.1 Hz), 8.46 (dd, 1H, J =0.9, 7.2 Hz), 9.31 (s, 1 H); MS m/z 363 (M⁺ with ³⁷Cl), 361 (M⁺ with ³⁵Cl), 318 (M⁺ with ³⁷Cl loss of OEt), 316 (M⁺ with ³⁵Cl loss of OEt). Anal. (C12H9ClINO2) C, H, N. The ester (2.72 g, 7.5 mmol) was dissolved in DME (35 mL), treated with NaOH (900 mg, 23 mmol), dissolved in 7 mL of water, and heated to reflux for 40 min. Upon cooling, the solution was treated with HOAc (3.0 mL, 53 mmol), solids formed, and the volatiles were removed by the aid of toluene azeotrope (3 imes25 mL). The resulting white solids were treated with $(COCI)_2$ [(0.98 mL, 11.25 mmol), DCE (15 mL), 80 °C, 2 h] and Me₂NH [(12 mL, 24 mmol, 2 M THF), -10 °C, 0.5 h]. The title compound was obtained following aqueous workup and SGC (eluant: 3:2 hexanes:EtOAc) as a waxy solid (985 mg, 2.7 mmol, 36%): ¹H NMR & 2.93 (s, 3 H), 3.23 (s, 3 H), 7.41 (t, 1 H, J = 7.5 Hz), 8.29 (dd, 1H, J = 1.2, 8.4 Hz), 8.43 (dd, 1 H, J = 1.2, 7.5 Hz), 8.86 (s, 1 H); MS m/z 362 (M⁺ with ³⁷Cl), 360 (M⁺ with ³⁵Cl), 318 (M⁺ with ³⁷Cl loss of NMe₂), 316 (M⁺ with ³⁵Cl loss of NMe₂).

N,*N*-Dimethyl-4-chloro-8-cyanoquinoline-3-carboxamide (35). Following the report of Piers¹⁶ as modified for 14vi, 34 (2.3 g, 6.4 mmol) was treated with 12-crown-4 (0.1 mL, 0.64 mmol), LiCN (12.7 mmol), and [Ph₃P]₄Pd (910 mg, 0.8 mmol) in benzene (60 mL) at rt for 10 d and gave 35 (280 mg, 1.08 mmol) as a powder: mp 194–200 °C; ¹H NMR δ 2.95 (s, 3 H), 3.24 (s, 3 H), 7.79 (dd, 1 H, J = 7.2, 8.7 Hz), 8.24 (dd, 1 H, J= 1.2, 7.2 Hz), 8.54 (dd, 1 H, J = 1.2, 8.7 Hz), 8.94 (s, 1 H); MS *m/z* 260 (M⁺ with ³⁷Cl), 258 (M⁺ with ³⁵Cl), 217 (M⁺ with ³⁷Cl loss of NMe₂), 215 (M⁺ with ³⁵Cl loss of NMe₂).

N-Methyl-4-chloro-1,3-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid (36) was prepared from 4-chloro-1,3-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carbonyl chloride²⁸ (1.38 g, 4.9 mmol), Et₃N (2.4 mL, 17.2 mmol), and MeNH₂ (0.42 mL, 40% aqueous, 5.4 mmol) in THF (10 mL) at -10 °C and obtained as a white powder (247 mg, 1.03 mmol, 20%): mp 219.7–221.2 °C; ¹H NMR δ 2.73 (s, 3 H), 3.08 (d, 3 H, *J* = 4.8 Hz), 4.07 (s, 3 H), 6.05 (broad s, 1 H), 8.74 (s, 1 H); MS *m/z* 240 (M⁺ with ³⁷Cl), 238 (M⁺ with ³⁵Cl), 210 (M⁺ with ³⁷Cl loss of NHMe), 208 (M⁺ with ³⁵Cl loss of NHMe).

N,*N*-Dimethyl-4-chloro-1,3-dimethyl-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylic acid (37) was prepared from 4-chloro-1,3-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carbonyl chloride²⁸ (4.81 g, 19.7 mmol), Et₃N (7 mL, 50 mmol), Me₂NH-HCl (1.77 g, 21.7 mmol) in DCE (25 mL) at -10 °C and obtained as a white solid (3.15 g, 63%): mp 143.3–143.8 °C; ¹H NMR δ 2.73 (s, 3 H), 2.93 (s, 3 H), 3.20 (s, 3 H), 4.08 (s, 3 H), 8.36 (s, 1 H); ¹³C NMR δ 14.4 (q), 33.9 (q), 34.9 (q), 38.3 (q), 112.5 (s), 135.0 (s), 141.1 (s), 147.5 (d), 151.5 (s), 167.0 (s); MS *m*/*z* 254 (M⁺ with ³⁷Cl), 252 (M⁺ with ³⁵Cl), 210 (M⁺ with ³⁷Cl loss of CONMe₂), 208. Anal. (C₁₁H₁₃ClN₄O) C, H, N.

A Representative Procedure for Target Preparation in Scheme 6. *N*,*N*-Dimethyl-8-chloro-4-[[3-[4-[2-(2,2,2-trifluoroethoxy)phenyl]piperazin-1-yl]propyl]amino]quinoline-3-carboxamide Hydrobromide (30f). A toluene (15 mL) suspension of ethyl 4,8-dichloroquinoline-3-carboxylate (982 mg, 3.64 mmol), K_2CO_3 (550 mg, 3.9 mmol), and 3-amino-1-propanol (0.29 mL, 3.8 mmol) was heated to reflux for 3.5 h. The mixture was filtered hot, the filter cake was washed with EtOAc, and the filtrate was concentrated. Some of the resulting powder (650 mg) was dissolved in CH_2Cl_2 (9 mL) and

 $Et_{3}N$ (0.41 mL, 2.84 mmol), cooled to 0 °C, and treated with MsCl (0.21 mL, 2.52 mmol). After 0.5 h, the solution was partitioned between aqueous NaHCO3 and CH2Cl2, dried (Na2-SO₄), concentrated, and subjected to **24f** (700 mg, 2.69 mmol), NaI (165 mg, 1.1 mmol), and K₂CO₃ (400 mg, 2.9 mmol) in DMF (22 mL) at 40 °C for 18 h. The ester was isolated by standard extraction and SGC (eluant: 3:2 hexanes:EtOAc, tr. Et₃N) as a foam (650 mg, 1.2 mmol, *ca.* 55%) and partially characterized: ¹H NMR δ 1.41 (t, 3 H, J = 7.2 Hz), 1.97 (quin, 2 H, J = 6.9 Hz), 2.51-2.68 (m, 6 H), 3.03-3.10 (m, 4 H), 3.85 (q, 2 H, J = 5.7 Hz), 4.40 (dq, 4 H, J = 7.2, 8.4 Hz), 6.87-7.07 (m, 4 H), 7.26 (dd, 1 H, J = 7.7, 8.4 Hz), 7.77 (dd, 1 H, J = 1.2, 7.5 Hz), 8.17 (dd, 1 H, J = 1.2, 8.7 Hz), 9.20 (s, 1 H), 9.27 (broad t, 1 H, J = 5.1 Hz). The foam (650 mg, 1.2 mmol) was dissolved in MeOH (10 mL) and treated with KOH (270 mg, 4.8 mmol) and water (1 mL). The solution was heated to 40 °C for 16 h, allowed to cool, and treated with HCl (10 mL, 1 M Et₂O, 10 mmol). White solids formed and were collected and dried in vacuo (6 h, 50 °C). They were suspended in DMF (15 mL), treated with CDI (215 mg, 1.32 mmol), and stirred at 60 °C for 2 h, at which time, *i*-Pr₂NEt (1.0 mL, 6.0 mmol) and Me_2NH ·HCl (145 mg, 1.8 mmol) were added and heating continued for 2.6 d. The resulting suspension was concentrated in vacuo and partitioned between aqueous NaHCO3 and CH_2Cl_2 (5 × 20 mL), dried (Na₂SO₄), and concentrated. The title compound was isolated by SGC (eluant 2% MeOH/CH2-Cl₂, trace Et₃N) as a foam (405 mg, 63%) and formed a solid from HBr/EtOH: mp 185-192 °C; IR 3430, 2955, 1635 cm⁻¹; ¹H NMR δ 2.19 (quin, 2 H, J = 5.7 Hz), 3.02–3.32 (m with 2 predominant s, $1\hat{2}$ H), 3.41-3.70 (m, 6 H), 4.73 (q, 2 H, J =9.0 Hz), 6.98–7.11 (m, 4 H), 7.76 (t, 1 H, J = 8.7 Hz), 8.19 (d, 1 H, J = 7.8 Hz), 8.45 (s, 1 H), 8.74 (d, 1 H, J = 8.4 Hz), 9.28 (broad s, 1 H); 13 C NMR δ 23.0 (t), 34.8 (q), 38.6 (q), 42.1 (t), 46.9 (t), 51.3 (t), 53.1 (t), 65.0 (t, J = 34 Hz), 109.6 (s), 114.8 (d), 118.8 (d), 119.7 (s), 122.9 (d), 123.2 (d), 123.4 (d), 124.0 (q, J = 142 Hz), 126.9 (d), 133.6 (d), 134.1 (s), 139.9 (d), 143.1 (s), 149.4 (s), 152.7 (s), 165.2 (s); MS m/z 551 (M⁺ with ³⁷Cl), 549 (M⁺ with ³⁵Cl), 321, 319. Anal. (C₂₇H₃₁F₃ClN₅O₂·(HBr)₂· (H₂O)_{2.5}) C, N; H: calcd, 5.06; found, 4.60.

N,N-Dimethyl-4-[[3-[4-[2-(2,2,2-trifluoroethoxy)phenyl] piperazin-1-yl]propyl]amino]quinoline-3-carboxamide hydrobromide (30f): mp 120 °C dec. Anal. (C₂₇H₃₂F₃N₅O₂· (HBr)_{2.5}) C, H, N.

A Representative Procedure for Target Preparation in Scheme 6. 4-[[3-[4-[4-Fluoro-2-(oxazol-2-yl)phenyl]piperazin-1-yl]propyl]amino]-1,3-dimethyl-1H-pyrazolo-[3,4-b]pyridine-5-carboxylic Acid Dimethylamide, Oxalate (37y). Piperazine 24y (300 mg, 1.21 mmol) was homologated to its aminopropyl derivative 43y [N-(3-bromopropyl)phthalimide (358 mg, 1.33 mmol), K₂CO₃ (200 mg, 1.45 mmol), DMF (10 mL), then SGC and N₂H₄·H₂O (0.5 mL, 0.82 mmol) in boiling EtOH (15 mL)] as described for Scheme 1. Crude 43y was treated with 37 (190 mg, 0.69 mmol) and K2- CO_3 (114 mg, 0.83 mmol) in xylene (10 mL) and heated to 120 °C for 16 h. The desired **37**y was obtained following SGC (eluant: 3% MeOH/CH2Cl2, 211 mg, 59%) and formed a solid with oxalic acid/EtOAc/MeOH: mp 88–96 °C; ¹H NMR δ 1.93 (quin, 2 H, J = 6.7 Hz), 2.64 (s, 3 H), 2.88 (t, 2 H, J = 7.0 Hz), 2.97-3.29 (m with predominant s, 16 H), 3.84 (s, 3 H), 5.97 (broad s, 1 H), 7.21-7.36 (m, 2 H), 7.41 (d, 1 H, J = 0.9 Hz), 7.89 (s, 1 H), 8.22 (d, 1 H, J = 0.9 Hz); ¹³C NMR δ 15.3 (q), 24.7 (t), 32.9 (q), 41.6 (t), 50.0 (t), 51.8 (t), 53.9 (t), 103.5 (s), 107.3 (s), 116.4 (d, J = 24.7 Hz), 117.7 (d, J = 21.7 Hz), 121.9 (d, J = 8.3 Hz), 122.3 (d, J = 8.5 Hz), 128.3 (d), 138.9 (s), 140.0 (d), 146.4 (s), 146.6 (s), 149.1 (d), 151.8 (s), 157.3 (d, J = 240Hz), 163.5 (s), 169.5 (s). Anal. $(C_{27}H_{33}FN_8O_2 \cdot C_2H_2O_4 \cdot (H_2O)_{0.2})$ C. H. N.

4-[[3-[4-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]-8-methylquinoline-3-carboxylic acid dimethylamide hydrobromide (33t): mp 174–180 °C. Anal. ($C_{27}H_{34}FN_5O_2$ ·(HBr)₃·H₂O) C, H; N: calcd, 9.45; found, 8.99.

4-[[3-[4-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]-8-cyanoquinoline-3-carboxylic acid dimethylamide oxalate (35t): mp 118–133 °C. Anal. ($C_{27}H_{31}$ -FN₆O₂·($C_{2}H_{2}O_{4}$)_{1.5}) C, H, N.

4-[[3-[4-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl]pro-

pyl]amino]-8-quinoline-3-carboxylic acid dimethylamide hydrobromide (35t'): mp 163.5–170.0 °C. Anal. ($C_{27}H_{33}$ -FN₆O₃·HBr·(EtOAc)_{0.33}·(H₂O)₃) C, N; H: calcd, 6.39; found, 5.64.

4-[[3-[4-[2-(2,2,2-Trifluoroethoxy)phenyl]piperazin-1-yl]propyl]amino]-1,3-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid methylamide oxalate (36f): mp 189.3– 189.5 °C. Anal. ($C_{25}H_{32}F_{3}N_7O_2$ ·($C_2H_2O_4$)₂) C, H, N.

4-[[3-[4-[2-(2,2,2-Trifluoroethoxy)phenyl]piperazin-1yl]propyl]amino]-1,3-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid dimethylamide hydrochloride (37f): mp 206.5-207.8 °C. Anal. (C₂₆H₃₄F₃N₇O₂·HCl) C, H, N.

4-[[3-[4-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]-1,3-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylic acid dimethylamide citrate (37t): mp 100–110 °C. Anal. ($C_{25}H_{34}FN_7O_2 \cdot C_6H_8O_7$) C, H, N.

4-[[3-[4-[2-(2,2,2-Trifluoroethoxy)phenyl]piperazin-1yl]propyl]amino]-3-*tert*-butyl-1-methyl-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylic acid dimethylamide hydrobromide (**38**f): mp 178.2–181.0 °C. Anal. ($C_{29}H_{40}F_3N_7O_2$ ·(HBr)_{2.5}· (EtOH)_{0.15}·(H₂O)_{0.65}) C, H, N.

4-[[3-[4-[2-(2,2,2-Trifluoroethoxy)phenyl]piperazin-1yl]propyl]amino]-3-methyl-1*H*-isoxazo[3,4-*b*]pyridine-5carboxylic acid dimethylamide hydrochloride (39f): mp 113 °C dec. Anal. ($C_{25}H_{31}F_{3}N_{6}O_{3}$ ·HCl·($H_{2}O$)_{0.5}) C, H, N.

4-[[3-[4-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]-1,2-dimethyl-1*H*-imidazo[4,5-*b*]pyridine-5carboxylic acid dimethylamide hydrochloride (40t): mp 160–168 °C. Anal. (C₂₅H₃₄FN₇O₂·(HCl)₃·(H₂O)_{1.5}) C, H, N.

7-[[3-[4-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]pyrazolo[1,5-a]pyrimidine-6-carboxylic acid dimethylamide oxalate (41t): mp 77.5–105 °C. Anal. $(C_{23}H_{30}FN_7O_2 \cdot (C_2H_2O_4)_{2.5})$ C, H, N.

7-[[3-[4-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]-3-chloropyrazolo[3,4-*b*]pyrimidine-6-carboxylic acid dimethylamide, oxalate (41t'): mp 128.5–138.5 °C. Anal. ($C_{23}H_{29}FClN_7O_2 \cdot (C_2H_2O_4)_2 \cdot H_2O$) C, H, N.

N,*N*-Dimethyl-4-[[3-[4-(4-fluoro-2-methoxyphenyl)piperazin-1-yl]propyl]amino]-7-methyl-1,8-naphthyridine-3-carboxamide fumarate (42t): mp 130–133 °C. Anal. $(C_{26}H_{33}FN_6O_2 \cdot C_4H_4O_4 \cdot (H_2O)_{1.5})$ C, H, N.

Acknowledgment. We express our sincere gratitude to the people of the Central R & D Analytical group (formerly the Institute of Analytical Research of Syntex) for their expertise and enthusiasm in characterization of the compounds described in this report. Dr. Douglas Bonhaus provided helpful direction for obtaining affinity estimates of compounds from the α_{1a} -AR, α_{2B} -AR, 5-HT_{1A}, and D₂ (nonfunctional) assays. We also appreciate Dr. Robin Clark's support and critique of this article.

References

- Garraway, W. M.; Collins, G. N.; Lee, R. J. High Prevalence of Benign Prostatic Hypertrophy in the Community. *Lancet* 1991, *338*, 469–471.
- (2) Caine, M.; Pfau, A.; Perlberg, S. The Use of Alpha-Adrenergic Blockers in Benign Prostatic Obstruction. *Br. J. Urol.* 1976, 48, 255–263.
- (3) Hedlund, H.; Andresson, K.-E.; Ek, A. Effects of Prazosin in Patients with Benign Prostatic Obstruction. J. Urol. 1983, 130, 275–278.
- (4) Lepor, H. Role of Alpha-Adrenergic Blockers in the Treatment of Benign Prostatic Hyperplasia. *Prostate Suppl.* 1990, *3*, 75– 84.
- (5) Jankegt, R. A.; Chapple, C. R. Efficacy and Safety of the Alpha-1 Blocker Doxazosin in the Treatment of Benign Prostatic Hyperplasia. Analysis of 5 Studies. *Eur. Urol.* **1993**, *24*, 319–325.
- (6) Kawabe, K.; Ueno, A.; Takimoto, Y.; Aso, Y.; Kato, H. Use of an Alpha-1 Blocker, YM617, in the Treatment of Benign Prostatic Hypertrophy. *J. Urol.* **1990**, *144*, 908–912.
 (7) (a) Battaglia, G.; Shannon, M.; Borgundvaag, B.; Titeler, M.
- (7) (a) Battaglia, G.; Shannon, M.; Borgundvaag, B.; Titeler, M. Properties of [³H]Prazosin-Labeled α₁-Adrenergic Receptors in the Rat Brain and Porine Neurointermediate Lobe Tissue. J. Neurochem. **1983**, 41, 538–542. (b) Hanft, G.; Gross, G.; Beckeringh, J. J. α₁-Adrenoceptors: The Ability of Various Agonists and Antagonists to Discrimnate between Two Distinct [³H]-Prazosin Binding Sites J. Pharm. Pharmacol. **1989**, 41, 714–

- 716. (c) Oshita, M.; Kigoshi, S.; Muramatsu, I. Three Distinct Binding Sites for [³H]Prazosin in the Rat Cerebral Cortex. Br. Pharmacol. 1991, 104, 961-965. (d) Ford, A. P. D. W.; Williams, T. J.; Blue, D. R.; Clarke, D. E. a1-Adrenoceptor Classification: Sharpening Occam's Razor. Trends Pharmacol. *Sci.* **1994**, *15*, 167–170. (e) Hieble, J. P.; Bylund, D. B.; Clarke, D. E.; Eikenburg, D. C.; Langer, S. Z.; Lefkowitz, R. J.; Minneman, K. P.; Ruffolo, R. R., Jr. International Union of Pharmacology X. Recommendation for Nomenclature of α_1 -Adrenoceptors: Consensus Update Pharmacol. Rev. 1995, 47, 267-270. (f) Recent reviews of the AR field are most illuminating: Hieble, J. P.; Bondinell, W. E.; Ruffolo, R. R., Jr. α - and β -Adrenoceptors: From the Gene to the Clinic. 1. Molecular Biology and Adrenoceptor Subclassification. J. Med. Chem. 1995, 38, 3415-3444; 2. Struture-Activity Relationships and Therapeutic Ap-plications J. Med. Chem. **1995**, 38, 3681–3716. A recent disclosure also elaborates on the α_1 -AR nomenclature: Giardina, D.; Crucianelli, M.; Romanelli, R.; Leonardi, A.; Poggesi, E.; Melchiorre, C. Synthesis and Biological Profile of the Enanti-omers of [4-(4-Amino-6,7-dimethoxyquinazolin-2-yl)-*cis*-octahydroquinoxalin-1-yl]furan-2-ylmethanone (Cyclazosin), a Potent Competitive a1B-Adrenoceptor Antagonist. J. Med. Chem. 1996, *39*, 4602–4607
- (8) Moriyama, N.; Kurimoto, S.; Horie, S.; Nasu, K.; Tanaka, T.; Yano, K.; Hirano, H.; Tsujimoto, G.; Kawabe, K. Detection of α₁-AR Subtypes in Human Hypertrophied Prostate by *in situ* Hybridization. *Histochem. J.* **1996**, *28*, 283–288.
- (9) Ford, A. P. D. W.; Arredondo, N. F.; Blue, D. R., Jr.; Bonhaus, D. W.; Jasper, J.; Kava, M. S.; Lesnick, J.; Pfister, J. R.; Shieh, A.; Vimont, R. L.; Williams, T. J.; McNeal, J. E.; Stamey T. A.; Clarke, D. E. RS-17053, a Selective α_{1A}-Adrenoceptor Antagonist, Displays Low Affinity for Functional α₁-Adrenoceptors in the Human Prostate: Implications for Adrenoceptor Classification. *Mol. Pharmacol.* **1996**, *49*, 209–215.
 (10) Gros, G.; Hanft, G.; Kolassa, N. Urapidil and Some Analogues
- (10) Gros, G.; Hanft, G.; Kolassa, N. Urapidil and Some Analogues With Hypotensive Properties Show High Affinities for 5-hydroxytryptamine (5-HT) Binging Sites of the 5-HT_{1A} Subtype and for α₁-Adrenoceptor Binding Sites. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1987**, *336*, 597–601.
- (11) (a) Reg. No. 136605-47-5. George, P.; Mangane, M.; Manoury, P.; Merly, J.; Monoury, P. New 2-Aminopyrimidine-4-carboxa-mide(s) Are Alpha-1-Adrenoceptor Antagonists for Treating Benign Prostatic Hypertrophy and Dysuria. EP appl'n 511072, U.S. 5,229,392; April 23, 1995. (b) Lefevre-Borg, F.; George, P.; O'Connor, S. E.; Lechaire, J.; Galvin, A. M.; Arbilla, S.; Pimoule, C.; Graham, D.; Langer, S. Z. SL 89.0591: A Novel α₁-Adreno-ceptor Antagonist Which Shows Preferential Effects on the Lower Urinary Tract. Br. J. Pharmacol. 1995, 114, 419P.
- Lower Urinary Tract. Br. J. Pharmacol. 1995, 114, 419P.
 (12) (a) Archer, S.; Wylie, D. W.; Harris, L. S.; Lewis, T. R.; Schulenberg, J. W.; Bell, M. R.; Kullnig, R. K.; Arnold, A. 1-(Indolylalkyl)-4-Arylpiperazines: A New Class of Tranquilizers. J. Am. Chem. Soc. 1962, 84, 1306-7. (b) Hibert, M. F.; Gittos, M. W.; Middlemiss, D. N.; Mir, A. K.; Fozard, J. R. Graphics Computer-Aided Receptor Mapping as a Predictive Tool for Drug Design: Development of Potent, Selective, and Stereospecific Ligands for the 5-HT_{1A} Receptor. J. Med. Chem. 1988, 31, 1087-1093. (c) Hrib, N. J.; Jurcak, J. G.; Huger, F. P.; Errico, C. L.; Dunn; R. W. Synthesis and Biological Evaluation of a Series of Substituted N-Alkoxyimides and -amides as Potential Atypical Antipsychotic Agents. J. Med. Chem. 1991, 34, 1068-1072. (d) Reitz, A. B.; Bennett, D. J.; Blum, P. S.; Codd, E. E.; Maryanoff, C. A.; Ortegon, M. E.; Renzi, M. J.; Scott, M. K.; Shank, R. P.; Vaught, J. L. A New Arylpiperazine Antipsychotic with High D₂/D₃/5-HT_{1A}/α₁-Adrenergic Affinity and a Low Potential for Extrapyramidal Effects. J. Med. Chem. 1994, 37, 1060-1062. (e) Perrone, R.; Berardi, F.; Olabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govoni, S. High Affinity and Selectivity on 5-HT_{1A} Receptor of 1-Aryl-4-[(1-tetralin)alkyl]piperazines. 2. J. Med. Chem. 1995, 38, 942-949. (f) Orjales, A.; Alonso-Cires, L.; Labeaga, L.; Corcostegui, R. New (2-Methoxyphenyl)piperazine Derivatives as 5-HT_{1A} Receptor Ligands with Reduced α₁-Adrenergic Activity. Synthesis and Structure-Affinity Relationships. J. Med. Chem. 1995, 38, 1273-1277.
- (13) Azuma, H.; Sugimoto-Tokushima, M.; Tanaka, K.; Ikenoue, Y.; Ito, S.; Ishikawa, M. α₁-Adrenoceptor Antagonist Activity of Novel Pyrimidine Derivatives (SHI437 & IK29) in Rabbit Aorta and Trigone of the Bladder. *Br. J. Pharmacol.* **1989**, *96*, 1000– 1006.
- (14) For the purposes of this discovery program, it mattered not that the rat aorta potentially possesses a mixed α_{1B} - and α_{1D} -AR population. For a recent report that addresses a single subtype, see: Kenny, B. A.; Chalmers, D. H.; Philpott, P. C.; Naylor, A. M. Characterization of an α_{1D} -Adrenoceptor Mediating the Contractile Response of Rat Aorta to Noradrenaline. *Br. J. Pharmacol.* **1995**, *115*, 981–986. For a treatment of multiple population see: Van der Graaf, P. H.; Shankly, N. P.; Black, J. W. Analysis of the Activity of α_1 -Adrenoceptor Antagonists in Rat Aorta. *Br. J. Pharmacol.* **1996**, *118*, 299–310.

- (15) Posner, G. H. An Introduction to Synthesis Using Organocopper *Reagents*; Wiley Interscience: New York, 1980; pp 81–84.
 (16) Piers, E.; Fleming, F. F. Conversion of Enol Trifluoromethane-
- sulphonates into α , β -Unsaturated Nitriles. J. Chem. Soc., Chem.
- Commun. 1989, 756–757.
 (17) Davis, F. A.; Wei, J.; Sheppard, A. C.; Gubernick, S. The Mechanism of Hydroxylation of Organometallic Reagents by 2.Sulfonyloxaziridines. *Tetrahedron Lett.* 1987, *28*, 5115–5118.
- (18) Purchased from Maybridge Chemical Co., UK, Reg. No. 140413-44-1.
- (19) Ross, W. C. J. The Preparation of Some 4-Substitututed Nicotinic Acids and Nicotinamides. J. Chem. Soc. C 1966, 1816-1821.
- (20)4-Lithiation of N,N-diisopropylnicotinamide was performed according to the following: Two, M.; Kuraishi, T. Synthesis of (±)-Sesbannine *via* Directed Metallation of Tertiary Nicotinamides. Tetrahedron Lett. 1983, 24, 2649-2652. The reaction was quenched with 1,2-dibromotetrafluoroethane to produce quenched with 1,2-dibromotetrafluoroethane to produce N,N-diisopropyl-4-bromonicotinamide: oil; 22% yield; ¹H NMR λ 1 12 (d. 3 H. J = 6.6 Hz) + 0.7 (J. 6.7 Hz) δ 1.12 (d, 3 H, J = 6.6 Hz), 1.25 (d, 3 H, J = 6.6 Hz), 1.58 (d, 6 H, J = 6.6 Hz), 3.51-3.61 (m, 2 H), 7.54 (d, 1 H, J = 5.4 Hz), 8.39 (d with predominant s, 2 H, J = 5.4 Hz); MS m/z 286 (M⁺ with ⁸¹Br), 284 (M⁺ with ⁷⁹Br), 243 (M⁺ loss Me₂CH with ⁸¹Br), 241 (M⁺ loss Me₂CH with 79 Br).
- (21) Purchased from Aldrich Chemical Co., USA, Reg. No. 5326-23-
- (22)Andrews, K. J. M.; Tong, B. P. Acid-catalysed Ring Cleavage of
- Some Pyrimidine Derivatives. *J. Chem. Soc. C* **1968**, 1753–1761. (23) Prelog, V.; Driza, G. J. Sur la *N*-Phenylpiperazine. *Collect. Czech.* Chem. Commun. 1933, 5, 497-502.
- Poindexter, G. S.; Bruce, M. A.; LeBoulluec, K. L.; Monkovic, I. (24)Use of 2-Oxazolidinones As Latent Aziridine Equivalents. III. Preparation of N-Substituted Piperazines. Tetrahedron Lett. 1994, 35, 7331-7334. 3-(2-Hydroxyethyl)-2-oxazolodinone [3356-88-5] is available from Pfaltz & Bauer.
- (25) Meyers, A. I.; Gabel, R. The Displacement of Methoxy by Amino Groups in Aryloxazolines. A Novel Approach to o-Amino-, o-Alkylamino-, and o-Dialkylaminobenzoic Acids. J. Org. Chem. **1977**, *42*, 2653–2654.
- (26) ten Hoeve, W.; Kruse, C. G.; Luteyn, J. M.; Thiecke, J. R. G.; Wynberg, H. Direct Substitution of Aromatic Ethers by Lithium Amides. A New Aromatic Amination Reaction. J. Org. Chem. **1993**, 58, 5101-5106.
- (27) Oh-e, T.; Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Triflates J. Org. Chem. 1993, 58, 2201–2208.
 (28) Reg. No. 175201-95-3 purchased from Maybridge Chemical Co.,
- UK. Hoehn, H.; Denzel, T. Amino Derivatives of Pyrazolopyri-dine Carboxamides. U.S. Patent 3,966,746; June 29, 1976.

- (29) 1,2-Dimethyl-5-nitroimidazole was subjected to diethyl ethoxymethylenemalonate under 1 atm of H₂ and catalytic Pd-C. Ethyl 7-chloro-2,3-dimethylimidazo[4,5-b]pyridine-6-carboxylate is known; cf.: Al-Shaar, A. H. M.; Chambers, R. M.; Gilmor, D. W.; Lythgoe, D. J.; McClenaghan, I.; Ramsden, C. A. The Synthesis of Heterocycles via Addition-Elimination Reactions of 4- and 5-Aminoimidazoles. J. Chem. Soc., Perkin Trans. 1 1992, 2789-2811
- (30) Springer, R. H.; Scholten, M. B.; O'Brien, D. E.; Novinson, T.; Miller, J. P.; Robins, R. K. Synthesis and Enzymatic Activity of 6-Carbethoxy and 6-Ethoxy-3,7-disubstituted-pyrazolo[1,5-a]pyrimidines and Related Derivatives as Adenosine Cyclic 3',5'-Phosphate Phosphodiesterase Inhubitors. J. Med. Chem. 1982, 25. 235-242.
- (31) Klemm, K.; Pruesse, W.; Schoetensack, W. 4-[ω-[4-(o-Methylphenyl)-1-piperazinyl]alkylamino]pyrimidines (as antihypertensives). German Pat. 2,139,083; 15 Feb. 1973; Chem. Abstr. 1973, 78 489
- (32) Bott, G.; Field, L. D.; Sternhell, S. Steric Effects. A Rationally Designed System. J. Am. Chem. Soc. 1980, 102, 5618-5626.
- Augstein, J.; Austin, W. C.; Boscott, R. J.; Green, S. M.; (33)Worthing, C. R. Some Cardiovascular Effects of a Series of Aryloxyalkylamines. I. J. Med. Chem. 1965, 8, 356-367.
- (34) Blue, D. R., Jr.; Clarke, D. E.; Zhu, Q.-M.; et al. Unpublished observations.
- (35) Thunus, L.; Lapiere, C. L. Quelques Derives de la (Methyl-4piperazinyl-1)-2 pyridine Substituee en 3. Eur. J. Med. Chem. Chim. Ther. 1974, 9, 55-58.
- (36) Seyferth, D.; Cohen, H. M. Vinyl Derivatives of Metals. XIV. Reaction of the Trimethylvinyl Compounds of Silicon, Germanium, and Tin with Iodomethylzinc Iodide. Preparation by the Grignard Procedure. Inorg. Chem. 1962, 1, 913-916.
- (37) Cohen, T.; Diets, A. G., Jr.; Miser, J. R. A Simple Preparation of Phenols from Diazonium Ions via the Generation and Oxidation of Aryl Radicals by Copper Salts. J. Org. Chem. 1977, 42, 2053-2058
- (38) Evans, D. L.; Minster, D. K.; Jordis, U.; Hecht, S. M.; Mazzu, A. L., Jr.; Meyers, A. I. Nickel Peroxide Dehydrogenation of Oxygen-, Sulfur-, and Nitrogen-Containing Heterocycles. J. Org. Chem. 1979, 44, 497-501.
- (39) Pascal, J. C.; Jullien, I.; Pinhas, H.; Dumez, D.; Darre, L.; Poizot, A. Evidence of an Effective Antiarrhythmic Compound by Study of in vivo Metabolisation. Eur. J. Med. Chem. 1990, 25, 291-293.

JM970166J